Font Size: a A A

Microstructure and Mechanical Properties of Porous Mullite

Posted on:2012-01-30Degree:Ph.DType:Dissertation
University:Northwestern UniversityCandidate:Hsiung, Chwan-Hai HaroldFull Text:PDF
GTID:1461390011964845Subject:Engineering
Abstract/Summary:PDF Full Text Request
Mullite (3 Al2O3 : 2 SiO2) is a technologically important ceramic due to its thermal stability, corrosion resistance, and mechanical robustness. One variant, porous acicular mullite (ACM), has a unique needle-like microstructure and is the material platform for The Dow Chemical Company's diesel particulate filter AERIFY(TM). The investigation described herein focuses on the microstructure-mechanical property relationships in acicular mullites as well as those with traditional porous microstructures with the goal of illuminating the critical factors in determining their modulus, strength, and toughness.;Mullites with traditional pore morphologies were made to serve as references via slipcasting of a kaolinite-alumina-starch slurry. The starch was burned out to leave behind a pore network, and the calcined body was then reaction-sintered at 1600C to form mullite. The samples had porosities of approximately 60%. Pore size and shape were altered by using different starch templates, and pore size was found to influence the stiffness and toughness.;The ACM microstructure was varied along three parameters: total porosity, pore size, and needle size. Total porosity was found to dominate the mechanical behavior of ACM, while increases in needle and pore size increased the toughness at lower porosities. ACM was found to have much improved (∼130%) mechanical properties relative to its non-acicular counterpart at the same porosity.;A second set of investigations studied the role of the intergranular glassy phase which wets the needle intersections of ACM. Removal of the glassy phase via an HF etch reduced the mechanical properties by ∼30%, highlighting the intergranular phase's importance to the enhanced mechanical properties of ACM. The composition of the glassy phase was altered by doping the ACM precursor with magnesium and neodymium. Magnesium doping resulted in ACM with greatly reduced fracture strength and toughness. Studies showed that the mechanical properties of the two doped intergranular glasses and their interfaces with mullite were quite similar. The reductions in strength and toughness were traced to differences in the ACM network structure and mass-distribution that are hypothesized to result from dopant-altered ACM nucleation and growth kinetics.;X-ray computed tomography, a non-destructive 3-D imaging technique, played a key role in this work, enabling the measurement of needle diameters, quantification of the ACM structural network, and finite element analysis of ACM's mechanical response.
Keywords/Search Tags:Mechanical, ACM, Mullite, Porous, Microstructure, Pore size, Needle
PDF Full Text Request
Related items