Font Size: a A A

Processing-structure-property relationships in oriented polymers

Posted on:2002-02-19Degree:Ph.DType:Dissertation
University:Texas A&M UniversityCandidate:Xia, ZhiyongFull Text:PDF
GTID:1461390011490797Subject:Engineering
Abstract/Summary:
The Processing-Structure-Property (P-S-P) relationships in oriented polymers have been studied in this dissertation. Controlled polymer orientation has been achieved through the equal channel angular extrusion (ECAE) process. The structure of the ECAE-oriented polymers have been investigated from all dimensional levels, i.e., from spherulitical scale (micrometer scale), lamellar scale (nanometer scale) to crystallographic scale (angstrom scale). The results indicate that the polymer spherulites are deformed into macrofibrils after one ECAE process. Within the macrofibrils, a “V-type” lamellar orientation has been formed to accommodate the overall straining of spherulites. The molecular chains in the crystalline lamellae are found to be tilted at a small angle with respect to the lamellar surface. Whereas, the molecular chains between the macrofibrils and crystalline lamellae are highly stretched. Property characterization indicates that ECAE-induced microstructure is responsible for the improved physical and mechanical properties. The improved physical and mechanical properties include high tensile modulus, higher impact fracture toughness and better scratch resistance.; This research has also clarified several controversies in the research of semicrystalline polymers. First, this research gives an unambiguous account on the lamellar evolution during large-scale plastic deformation. The crystalline lamellae in the ECAE-oriented samples have been found to be evolved from the original crystalline lamellae. Secondly, the shifting of the primary relaxation peak in ECAE-oriented PET has been found to be due to the increase in molecular orientation. Thirdly, the transmission electron microscopy (TEM) indicates that in low crystallinity semicrystalline polymers, the larger value of the two characteristic lengths from small angle X-ray scattering (SAXS) correlation function analysis should be assigned to the crystalline lamellar thickness.
Keywords/Search Tags:Polymers, Lamellar, Crystalline
Related items