Microstructural evolution and thermal stability of aluminum-cerium-nickel ternary eutectic | | Posted on:2002-05-13 | Degree:Ph.D | Type:Dissertation | | University:University of Florida | Candidate:Fodran, Eric John | Full Text:PDF | | GTID:1461390011490456 | Subject:Engineering | | Abstract/Summary: | PDF Full Text Request | | The engineering community has identified several applications in which the use of a lightweight alloy for elevated temperature service, in substitution for current heavier and more costly alloys, would have a substantial benefit. This need for structural materials to perform at elevated temperatures has driven researchers to develop novel alloys as well as processing routes to manufacture them and obtain optimum microstructures. Previous studies on aluminum based binary eutectic systems have proven that the aluminum alloy system shows promising potential for satisfying this need. This has motivated the investigation of the solidification and thermal stability of the Al-12 wt% Ce-5 wt% Ni ternary eutectic performed in this investigation. The solidification behavior of the Al-Ce-Ni ternary eutectic was conducted via solidification of various compositions at and above the eutectic composition in a copper chill mold, thus allowing the observation of various solidification rates on a single ingot. Directional solidification of the ternary eutectic was also conducted to further study the unique microstructures forms. After casting the ingots were analyzed for the composition of phases in the microstructure via X-ray diffraction, and the distribution of the phases determined by scanning electron microscopy. The solidification of the ternary eutectic was found to occur much like that of a faceted/non-faceted binary couples growth. The thermal stability of the microstructure was also studied. Ternary eutectic microstructures were heat treated at various temperatures for time intervals up to 100 hours. The coupled growth microstructures were found to coarsen at temperature above 400°C, which was associated with a loss in hardness. Coarsening of the microstructures at elevated temperatures was also observed to occur by multiple mechanisms: an Ostwald ripening within the eutectic cell, and an accelerated coarsening at the cell boundaries due to increased diffusion at boundaries. Unique ternary eutectic structures were found to be comprised of a fine distribution of chains of alternating Al11Ce3 and Al3Ni intermetallics in an aluminum matrix. The unique microstructures formed are believed to be driven by the solute diffusion profile at the solid/liquid interface during solidification. This suggests that it may not be possible to generate a microstructure comprised of a homogeneous distribution of multiple product phases in a continuous matrix on solidification from a single parent phase, such as that of the solidification of ternary eutectics. | | Keywords/Search Tags: | Ternary eutectic, Thermal stability, Solidification, Aluminum | PDF Full Text Request | Related items |
| |
|