Barium titanate tape properties for MLCC application using different binder systems | | Posted on:2004-05-29 | Degree:Ph.D | Type:Dissertation | | University:Clemson University | Candidate:Yoon, Dang-Hyok | Full Text:PDF | | GTID:1461390011468175 | Subject:Engineering | | Abstract/Summary: | PDF Full Text Request | | Most of multilayer ceramic capacitor (MLCC) industries are currently using solvent-based slip systems, although water-based slips have been receiving increasing attention due to reduced health and environmental hazards. The current work focuses on two main fields to meet the challenges in MLCC processing in aqueous media. One is the comparison between water- and solvent-based slip systems using design of experiments (DOE). The other is the understanding of Ba2+ ion leaching behavior in water and its effect on tape properties.; For the first part, twenty four kinds of BaTiO3 slips were investigated using three different binder systems: one solvent-based, and two water-based systems. Tape casting, sintering and characterization were conducted. Slip viscosity and tape strength of the green tape depended significantly on the binder type. It was possible to achieve a higher green density for water-based system than that for a solvent-based one. Most of the green body properties from solvent-based system depended on the ceramic powder. On the other hand, the dispersant was the most significant factor for the green body properties of two water-based systems. Sintered properties such as microstructure and dielectric permittivity for three systems depended significantly on the type of ceramic powder. An optimization was performed for each system by means of a scorecard. By choosing the optimum condition, comparable results were drawn for the water-based system compared to a solvent-based one for MLCC application.; For the second part, the amount of Ba2+ ion leaching from BaTiO3 in water was determined by an EDTA titration method. The greater extent and the faster rate of Ba2+ leaching were found at the lower solution pH. The excess free barium ions expressed by means of the Ba/Ti ratio adversely affected most tape properties. To passivate BaTiO 3 surface from Ba2+ ion leaching in water, passivation agent layer (PAL) was formed by drying the slurry after adding a commercial polymeric dispersant. Compared to the conventional dispersant adding method, this PAL method was more effective in reducing the amount of Ba2+ leaching. Moreover, using PAL did not deteriorate any of green and sintered properties of BaTiO3 tape. | | Keywords/Search Tags: | Using, MLCC, Tape, Systems, Solvent-based, PAL, Water-based, Leaching | PDF Full Text Request | Related items |
| |
|