Font Size: a A A

Molecular sieve adsorbents and membranes for applications in the production of renewable fuels and chemicals

Posted on:2012-04-15Degree:Ph.DType:Dissertation
University:University of MinnesotaCandidate:Ranjan, RajivFull Text:PDF
GTID:1461390011462140Subject:Alternative Energy
Abstract/Summary:
Metal organic frameworks (MOF), a new class of porous materials, have emerged as promising candidate for gas storage, separation membrane and chemical sensors. We used secondary growth method to grow microporous metal organic framework (MMOF) films on porous alumina supports. Examination of the film using SEM and XRD showed that the crystals were well inter-grown and preferentially oriented. Gas permeation study showed that membranes were defect free and moderate selectivity was achieved for H2/N2 gas pairs.;The next project had to do with ethanol production from lignocellulosic biomass as an alternate energy source. However, toxic inhibitors produced from the hydrolysis of biomass decrease ethanol yield during the fermentation process. We demonstrated the use of zeolites for the pretreatment of hydrolyzate in order to remove inhibitors like 5-Hydroxymethylfurfuraldehyde (HMF) and furfural from aqueous solution. Zeolites exhibit preferential adsorption of the inhibitors and in effect improve the ethanol yield during fermentation. Ideal Adsorbed Solution Theory (IAST) was also used to predict adsorption isotherms for HMF-furfural mixtures using single component adsorption data.;We also studied production of HMF, a potential substitute as a building block for plastic and chemical production, from renewable biomass resources. Catalytic dehydration of fructose for HMF production faces problems like low conversion and yield. Dimethyl sulfoxide (DMSO) can be used as the solvent as well as the catalyst resulting in high HMF yield. We studied a reaction-separation system for this dehydration reaction where the product (HMF) could be recovered by selective adsorption on solid adsorbents from the reaction mixture.
Keywords/Search Tags:HMF, Production, Adsorption
Related items