Font Size: a A A

Interpreting the properties of galaxies

Posted on:2001-01-04Degree:Ph.DType:Dissertation
University:The Ohio State UniversityCandidate:Conti, AlbertoFull Text:PDF
GTID:1460390014453984Subject:Physics
Abstract/Summary:
Galaxies exhibit a wide range of physical properties (e.g., luminosities, colors, velocity widths, star formation, gas and stellar content) and the evolutionary processes responsible for these properties are numerous and complex. Understanding which processes shape the observable properties of galaxies and which others play only a minor role, inherently requires a large sample of galaxies. Moreover, if we want to understand why galaxies have the properties they do, we need a theory of galaxy formation.; The standard paradigm of galaxy formation assumes that most of the matter is dark and dissipationless and that, under the influence of gravity, structures on galactic and larger scales grow hierarchically (from Gaussian initial conditions) with smaller objects forming first. Gas, moving under the gravitational influence of the dark component, dissipates and collapses at the center of the potential wells provided by the dark matter. In this picture the internal structure of the dark matter clumps and their formation history regulate the global properties of galaxies. However, these properties must also depend on how gas cools to form the dense clouds that seed star formation and how star formation affects the surrounding medium with the injection of energy and heavy elements.; I show how simple, "semi-analytic" parameterizations are used to describe the highly non-linear aforementioned processes and to predict a wide range of properties of the galaxy population for any specific cosmogony. I then present a simple and flexible framework to extract from the numerous observable properties of disk galaxies that semi-analytic models predict, only those that are needed to characterize the sample as a whole. This framework makes use of the well-know statistical technique of Principal Component Analysis (PCA). Moreover, I correlate the semi-analytic assumptions with the PCA findings and determine which, among our theoretical assumptions, shape the observable galaxies' properties. When applied to large dataset of observable properties of galaxies, such as the upcoming Sloan Digital Sky Survey, this framework will provide useful insights on the process of galaxy formation.
Keywords/Search Tags:Galaxies, Formation
Related items