Font Size: a A A

Interaction of a synthetic jet with a flat plate boundary layer

Posted on:2002-11-11Degree:Ph.DType:Dissertation
University:University of FloridaCandidate:Rampunggoon, PrakitFull Text:PDF
GTID:1460390011999095Subject:Engineering
Abstract/Summary:
The interaction of a 2-dimensional modeled synthetic jet with a flat plate boundary layer is investigated numerically using an incompressible Navier-Stokes solver. A simple, two-dimensional synthetic jet configuration along with a flat plate, laminar Blasius boundary layer was used in the current study. The oscillating diaphragm of the actuator is modeled in a realistic manner as a moving boundary in an effort to accurately compute the flow inside the jet cavity. The primary focus of the current study is on describing the dynamics of the synthetic jet in the presence of external crossflow. However, in addition, simulations of the jet with quiescent external flow have also been performed. A systematic framework was put forth for characterizing the jet that consists of computing the various moments of the velocity profile along with an integral measure of the profile skewness. A comprehensive parametric study has been carried out where the diaphragm amplitude, external flow Reynolds number, boundary layer thickness, and slot dimensions are varied; and the scaling of the jet characteristics with parameters is examined. The simulations also allow us to extract some interesting flow physics associated with the vortex dynamics of the jet and to elucidate the effect of external cross flow on jet development. In addition, a low-dimensional model for jet velocity profile is proposed and tested. Finally, the so-called “virtual aero-shaping” effect of synthetic jets is examined and the current simulations indicate a simple scaling of this effect with the dynamical characteristics of the jet and external crossflow.
Keywords/Search Tags:Flat plate boundary layer, Synthetic jet, External crossflow
Related items