Large scale ground motion simulation requires supercomputing systems in order to obtain reliable and useful results within reasonable elapsed time. In this study, we develop a framework for terascale ground motion simulations in highly heterogeneous basins. As part of the development, we present a parallel octree-based multiresolution finite element methodology for the elastodynamic wave propagation problem. The octree-based multiresolution finite element method reduces memory use significantly and improves overall computational performance. The framework is comprised of three parts; (1) an octree-based mesh generator, Euclid developed by TV and O'Hallaron, (2) a parallel mesh partitioner, ParMETIS developed by Karypis et al.[2], and (3) a parallel octree-based multiresolution finite element solver, QUAKE developed in this study. Realistic earthquakes parameters, soil material properties, and sedimentary basins dimensions will produce extremely large meshes. The out-of-core versional octree-based mesh generator, Euclid overcomes the resulting severe memory limitations. By using a parallel, distributed-memory graph partitioning algorithm, ParMETIS partitions large meshes, overcoming the memory and cost problem. Despite capability of the Octree-Based Multiresolution Mesh Method ( OBM3), large problem sizes necessitate parallelism to handle large memory and work requirements. The parallel OBM 3 elastic wave propagation code, QUAKE has been developed to address these issues. The numerical methodology and the framework have been used to simulate the seismic response of both idealized systems and of the Greater Los Angeles basin to simple pulses and to a mainshock of the 1994 Northridge Earthquake, for frequencies of up to 1 Hz and domain size of 80 km x 80 km x 30 km. In the idealized models, QUAKE shows good agreement with the analytical Green's function solutions. In the realistic models for the Northridge earthquake mainshock, QUAKE qualitatively agrees, with at most a factor of 2.5, with the observational data. Through simulations for several models, ranging in size from 400,000 to 300 million degrees of freedom on the 512-processors Cray T3E and the 3000-processors HP-Compaq AlphaServer Cluster at the Pittsburgh Supercomputing Center, we achieve excellent performance and scalability. |