Font Size: a A A

Combined methods for the determination of structure in disordered systems: Application of solid state NMR and diffraction methods to catalysis

Posted on:2004-07-21Degree:Ph.DType:Dissertation
University:State University of New York at Stony BrookCandidate:Chupas, Peter JosephFull Text:PDF
GTID:1460390011468494Subject:Chemistry
Abstract/Summary:
The research presented in this dissertation involves the use of a combination of experimental methods in the study of disordered heterogeneous catalysts, with the aim of determining active site structure. This research has used powder diffraction, including both the Rietveld and Pair Distribution Analysis (PDF) methods to probe the local, intermediate and long-range structure from atomic scale correlations to crystalline periodic order. Additionally, NMR spectroscopic methods have been applied to the study of local structure and correlations.; Disordered heterogeneous catalyst systems have been investigated with the aim of determining how structure is implicated in reactivity. Our work has focused on aluminum fluorides and fluorinated aluminum oxide as catalysts in halocarbon reactions. These materials are widely used both in halocarbon reforming reactions but also as acid catalysts. Using the methods described above, a detailed model is developed to describe formation of catalytically active sites on fluorinated aluminum oxide. Systems with low levels of fluorine versus fully fluorinated systems have been investigated as well as transition metal doped systems, to explore various aspects of structure that may play a vital role in governing catalytic activity. NMR has allowed us to discriminate surface structure versus bulk structure, while powder diffraction methods have developed a more global model of catalyst structure. Additionally, the use of basic probe molecules combined with NMR is shown to be effective in the study of acid site structure, the active sites in these catalysts.; In addition to the application of existing techniques to the study of catalysts, the work presented here also aims at developing new methodologies to study catalytic systems in-situ. Time-resolved PDF has been developed to study materials properties in-situ, as a function of temperature or reaction conditions. In conclusion, the work presented in this dissertation aims to illustrate how a combination of complementary methods is able to provide an accurate structural model in complex catalysts.
Keywords/Search Tags:Methods, Structure, NMR, Systems, Disordered, Catalysts, Diffraction
Related items