Font Size: a A A

Guided wave integrated optical devices

Posted on:2006-11-14Degree:Ph.DType:Dissertation
University:The University of ArizonaCandidate:Yurt, NasuhiFull Text:PDF
GTID:1458390008969739Subject:Physics
Abstract/Summary:
Guided-wave integrated optical devices are demonstrated by using various optical materials. First, a novel integrated optical planar waveguide platform for absorption-based biosensing is demonstrated. The platform integrates surface ion-exchanged channel waveguides with one-step UV patterned sol-gel structures to define the probing regions. Cytochrome c protein was utilized to characterize the device performance. Spectroscopically specific attenuation of approximately 2 dB in the guided signal occurred at 532nm for 1.4 cm long probing region. The estimated level of detection is about 1 pmol/cm2 of surface adsorbed cytochrome c. The proposed structure enables environmentally stable, compact, and inexpensive sensing devices that can be applied to a wide range of biological and chemical species. Second, An arrayed waveguide grating (AWG) with a novel S-shaped design for broadband operation is demonstrated for the first time with III-V semiconductors. This device design provided a polarization and temperature insensitive operation. It is also shown that, despite the wide operating range, chromatic dispersion does not degrade the performance of the AWG. The AWG is operational above the absorption edge of the semiconductor (1100nm) and can function for a wide range of wavelengths covering the coarse wavelength multiplexing range from 1270nm to 1610nm. A four channel AWG with this novel design was fabricated and characterized. Finally, simple fabrication of optical waveguides using a novel Photosensitive Polyimide (PSPI) is presented. PSPI has a glass transition temperature (Tg) of 330°C and is directly patterned by UV exposure and wet chemical development, lending itself to low cost fabrication techniques. The fabricated waveguides posses low optical absorption at 1.3 and 1.5 mum. Single and multimode buried ridge waveguides were made and tested, and a 0.4 dB/cm optical propagation loss is measured at 1.55 mum.
Keywords/Search Tags:Optical, Novel, Waveguides, AWG
Related items