Font Size: a A A

Fabrication and characterization of heterojunction transistors

Posted on:2012-08-05Degree:Ph.DType:Dissertation
University:University of FloridaCandidate:Lo, Chien-FongFull Text:PDF
GTID:1458390008499085Subject:Engineering
Abstract/Summary:
Submircon emitter finger high-speed double heterojunction InAlAs/InGaAsSb/InGaAs bipolar transistors (DHBTs) and a variety of nitride high electron mobility transistors (HEMTs) including AlGaN/GaN, InAlN/GaN, and AlN/GaN were fabricated and characterized. DHBT structures were grown by solid source molecular beam epitaxy (SSMBE) on Fe-doped semiinsulating InP substrates and nitride HEMTs were grown with a metal organic chemical vapor deposition (MOCVD) system on sapphire or SiC substrates. AlN/GaN HEMTs were grown with a RF-VMBE on sapphire substrates.;Ultra low base contact resistance of 3.7 x 10-7 ohm-cm2 after 1 min 250¢XC thermal treatment on noval InGaAsSb base of DHBTs was achieved and a long-term thermal stability of base metallization was studied. Regarding small scale DHBT fabrication, tri-layer system was introduced to improve the resolution for submicron emitter patterning and help to pile up a thicker emitter metal stack; guard-ring technique was applied around the emitter periphery in order to preserve the current gain at small emitter dimensions. Ultra low turn-on voltage and high current gain can be realized with InGaAsSb-base DHBTs as compared to the conventional InGaAs-base DHBTs. A peak current gain cutoff frequency (fT) of 268 GHz and power gain cutoff frequency (fmax) of 485 GHz were achieved.;GaN-based HEMTs herein were fabricated with gate lengths from 400 nm to 1im, and were deposited Ti/Al/Ni/Au as their Ohmic contact metallization. Effects of the Ohmic contact annealing for lattice-matched InAlN/GaN HEMTs with and without a thin GaN cap layer were exhibited and their optimal annealing temperature were obtained. A maximum drain current of 1.3 A/mm and an extrinsic transconductance of 366 mS/mm were demonstrated for InAlN/GaN HEMTs with the shortest gate length. A unity-gain cutoff frequency (fT) of 69 GHz and a maximum frequency of oscillation (fmax) of 80 GHz for InAlN/GaN HEMTs were extracted from measured scattering parameters.;Passivation is one of the most important parts in device processing for preventing degradation from various environmental conditions and promising a better device performance. Simply, ozone treatment of AlN on AlN/GaN heterostructures produced effective aluminum oxide surface passivation and chemical resistance to the AZ positive photoresist developer used for subsequent device fabrication. Metal oxide semiconductor diode-like gate current-voltage characteristics and minimal drain current degradation during gate pulse measurements were observed. With an additional oxygen plasma treatment on the gate area prior to the gate metal deposition, enhancement-mode AlN/GaN HEMTs were realized. In addition, for AlGaN/GaN HEMTs in high electrical field applications, a high-dielectric-strength SiNx passivation over an optimum thickness was needed to suppress surface flashover during a high voltage or high power operation. An excellent isolation blocking voltage of 900 V with a leakage current at 1 muA/mm was obtained across a nitrogen-implanted isolation-gap of 10 mum between two Ohmic pads.;The radiation hardness of HBTs and HEMTs is one of the critical factors that need to be established for military, space, and nuclear industry applications. The effects of proton radiation on the dc performance of InAlAs/InGaAsSb/InGaAs HBTs and AlN/GaN HEMTs were investigated. Both of these devices showed a remarkable resistance to high energy protoninduced degradation and appeared very promising for terrestrial or space-borne applications. The proton-irradiated devices with a dose of 2 x 1011 cm-2 (estimated to be equivalent to more than 40 years of exposure in low-earth orbit) showed only small changes in dc transfer characteristics, threshold voltage shift, and gate-lag with a high frequency pulse on the gate of the HEMTs and showed small changes in junction ideality factor, generation recombination leakage current, and output conductance for the HBTs. The effect the gate metallization on the nitride HEMT reliability was also examined. By replacing the conventional Ni/Au gate metallization with Pt/Ti/Au, the critical voltage for degradation of AlGaN/GaN HEMTs during off-state biasing stress was significantly improved from -55 V to over larger than -100 V.;Besides the irradiation or high voltage stresses, the effects of ambient on the Pt-gated HEMT sensor for gas sensing application were also explored. For the hydrogen sensing, the sensitivity decreased proportional to the relative humidity but the presence of humidity dramatically improved the sensor recovery characteristics after exposure to the hydrogen ambient.
Keywords/Search Tags:Hemts, Transistors, Emitter, Gate, Fabrication, Dhbts
Related items