Font Size: a A A

Enhanced electron mobility at gadolinium oxide(100)/silicon(100) interface: Origin and applications

Posted on:2013-08-20Degree:Ph.DType:Dissertation
University:The University of North Carolina at CharlotteCandidate:Sitaputra, WattakaFull Text:PDF
GTID:1458390008488142Subject:Engineering
Abstract/Summary:
A growth of a gadolinium oxide (Gd2O3) layer with (100) orientation on a Si(100) substrate was obtained for the first time using molecular beam epitaxy deposition (MBE) with the growth temperature in the range of 150-200°C and the oxygen partial pressure in the range of 10 -7-10-6 Torr. The growth was performed on three type of Si(100) substrate; n-type, p-type, and intrinsic. Among the three major orientations, i.e. (111), (110) and (100), the Gd2O3(100) is known from energetic point of view to be least favorable. Nonetheless, an enhancement in electron mobility can only be found from the interface between Gd2O3(100) and Si(100). Although p-type Si(100) results in the best structural considerations from x-ray diffraction among the three types of substrate, the best feature was observed in the Gd2O 3(100)/n-type Si(100) because of its highest mobility enhancement and satisfactory structural stability. The mobility of 1670-1780 cm2/V˙s was observed at room temperature, for carrier concentration > 1018 cm-3. This amounts to a factor of four higher in electron mobility compared to a heavily doped n-type substrate with similar carrier concentration. This accumulation of electrons and mobility enhancement are attributed to two-dimensional confinement from charges transfer across the interface quite similar to modulation doping. Owing to these properties, the Gd2O3(100) becomes a promising candidate in promoting the scaling of logic devices.
Keywords/Search Tags:Electron mobility, Gd2o3, Interface, Substrate
Related items