Font Size: a A A

Investigation of the effects of returning electrons on klystron performance

Posted on:2006-12-21Degree:Ph.DType:Dissertation
University:The University of New MexicoCandidate:Roybal, William ThomasFull Text:PDF
GTID:1458390008455515Subject:Engineering
Abstract/Summary:
The klystron, as part of an RF distribution system for an accelerator, is one of the most important components contributing to the cost, reliability, and longevity of the overall system. Operating cost is one of the primary concerns for klystrons. Achieving high direct current (DC) to radio frequency (RF) conversion efficiency, free of instabilities is very important. There is uncertainty concerning the effects of returning electrons within the klystron and the impact that they have on klystron performance. The effects of reverse traveling electrons on klystron performance, such as efficiency, are poorly defined. Classical and even modern klystron design avoids the consideration of return electrons, and thus the effects have not been numerically analyzed and quantified. A better understanding of the electron beam-to-RF conversion process and the effects of return electrons within the klystron output circuit is needed.{09}Accurate klystron modeling and simulation of return electron effects are required to better understand the implications of the problem. This analysis identifies the influence that returning electrons have on the overall beam dynamics and self-consistent cavity voltages. Closer examination of the harmonic content within the reverse beam current, along with comparison to the nominal klystron design, reveals the effects that reverse flowing electrons can have on klystron performance and design. The results of this work include a description of the electron beam dynamics for a beam decelerated in the output cavity, with separation occurring between forward and reverse electrons. Varying the output parameter of the klystron causes an unexpected response in return current quantity and bunching quality, yielding periodic correlations and responses to two-stream interaction.
Keywords/Search Tags:Klystron, Electrons, Return, Effects
Related items