Font Size: a A A

Development of model hydroxyapatite bone scaffolds with multiscale porosity for potential load bearing applications

Posted on:2006-10-23Degree:Ph.DType:Dissertation
University:University of Illinois at Urbana-ChampaignCandidate:Dellinger, Jennifer GwynneFull Text:PDF
GTID:1454390008962103Subject:Engineering
Abstract/Summary:
Model hydroxyapatite (HA) bone scaffolds consisting of a latticed pattern of rods were fabricated by a solid freeform fabrication (SFF) technique based on the robotic deposition of colloidal pastes. An optimal HA paste formulation for this method was developed. Local porosity, i.e. microporosity (1--30 mum) and sintering porosity (less than 1 mum), were produced by including polymer microsphere porogens in the HA pastes and by controlling the sintering of the scaffolds.; Scaffolds with and without local porosity were evaluated with and without in vitro accelerated degradation. Percent weight loss of the scaffolds and calcium and phosphorus concentrations in solution increased with degradation time. After degradation, compressive strength and modulus decreased significantly for scaffolds with local porosity, but did not change significantly for scaffolds without local porosity. The compressive strength and modulus of scaffolds without local porosity were comparable to human cortical bone and were significantly greater than the scaffolds with local porosity.; Micropores in HA disks caused surface pits that increased the surface roughness as compared to non-microporous HA disks. Mouse mesenchymal stem cells extended their cell processes into these microporous pits on HA disks in vitro. ALP expression was prolonged, cell attachment strength increased, and ECM production appeared greater on microporous HA disks compared to non-microporous HA disks and tissue culture treated polystyrene controls.; Scaffolds with and without microporosity were implanted in goats bones. Microporous scaffolds with rhBMP-2 increased the percent of the scaffold filled with bone tissue compared to microporous scaffolds without rhBMP-2. Lamellar bone inside scaffolds was aligned near the rods junctions whereas lamellar bone was aligned in a more random configuration away from the rod junctions. Microporous scaffolds stained darkly with toluidine blue beneath areas of contact with new bone. This staining might indicate either extracellular matrix (ECM) in the rods or dye bound to the degrading scaffold.; Although the presence of microporous topography alone did not influence bone healing in vivo, micropores were shown to provide tailorability of scaffold mechanical properties, provide a location for the storage and controlled release of a growth factor, and provide a location for bone integration inside the scaffold rods.
Keywords/Search Tags:Scaffolds, Porosity, HA disks, Rods
Related items