Font Size: a A A

Epigenetic Disruption of Tumor Suppressor Genes as Antagonists to Ras or Wnt Signaling Contributes to Tumorigenesis

Posted on:2013-08-04Degree:Ph.DType:Dissertation
University:The Chinese University of Hong Kong (Hong Kong)Candidate:Fan, YichaoFull Text:PDF
GTID:1454390008466141Subject:Health Sciences
Abstract/Summary:
Cancer is the top killer of the world, as well as the medical problem difficult to overcome. The conversion of a normal cell to a cancer cell is usually caused by upregulation of oncogenes and downregulation of tumor suppressor genes (TSGs). Epigenetic silencing has been proved to be important in TSGs inactivation, often through methylation of CpG-rich promoter regions. Ras and Wnt signaling pathways are both important for the tumorigenesis, epigenetic and functional studies of antagonists to Ras and Wnt signaling would provide us with candidate TSGs.;Ras is a well-known oncogene. Aberrant mutations of Ras genes occur in approximately 30% of human tumors, causing constitutively activated Ras signaling. However, in certain types of tumors with wild type Ras genes, abnormally activated Ras signaling is still a common and critical event, suggesting alternative mechanisms for Ras signaling hyperactivation. Ras is active when it is bound to GTP, while the hydrolysis of bound GTP and inactivation of Ras is catalyzed by Ras GTPase activating proteins (RasGAPs). Using 1-Mb array CGH (aCGH), we refined a small hemizygous deletion at the 6p21.3 chromosome region that contains a RasGAP family member gene RASA5, which used to be named as SynGAP and studied only in the neuron systems. We demonstrated that RASA5, rather than other RasGAP family members RASA2-4, is broadly expressed in human normal tissues while frequently epigenetically silenced in multiple tumors, especially in certain tumor types such as nasopharyngeal (NPC), esophageal (ESCC) and breast carcinomas (BrCa) with wild-type Ras while Ras cascade is still constitutively active. Ectopic expression of RASA5 led to apoptosis, growth and migration inhibition, as well as ‘stemness’ repression of tumor cells. Meanwhile, knockdown of RASA5 by siRNA promoted the tumor cell colony formation as well as epithelial-mesenchymal transition (EMT). The tumor-suppressive function of RASA5 was exerted through downregulating Ras-GTP level and further inactivating Ras signaling. Such an inhibitory effect could be partially abrogated in the presence of mutated, activated Ras or by deletion of the RasGAP domain. For the first time, our study refined the role of RASA5 as a tumor suppressor.;Wnt/DVL/β-catenin signaling pathway is aberrantly activated in a wide range of human cancers. We identified a DACT (Dpr/Frodo) family member TUSC-T2 as an epigenetically downregulated gene in human tumors. TUSC-T2 encodes a punctate cytoplasmic protein. Ectopic expression of TUSC-T2 dramatically inhibited tumor cell colony formation in silenced tumor cell lines, mainly through inducing apoptosis. TUSC-T2 interacts and downregulates Dishevelled (Dvl) protein, thus protecting glycogen synthase kinase 3β (GSK-3β) from inactivation by Wnt/Dvl and allowing GSK-3β to form a complex with Axin and APC to promote the phosphorylation and proteasomal degradation of β-catenin. Overexpression of TUSC-T2 disrupted β-catenin activation and accumulation in nuclei, thus preventing its binding to transcription factors of the Lef/Tcf family. This caused the downregulation of β-catenin target oncogenes such as c-Myc, CCND1 and Fibronectin as well as the inhibition of tumor cell proliferation and migration. We also observed that TUSC-T2 could inhibit tumor cell EMT.;Taken together, our data demonstrate that RASA5 and TUSC-T2 are functional tumor suppressors epigenetically silenced in multiple tumors through acting as negative regulators of the Ras or Wnt/Dvl/β-catenin cancer pathways, and could be developed as promising biomarkers for human tumors. Of note, our study reveals that epigenetic silencing of the Ras antagonist represents a new mechanism responsible for Ras aberrant activation in cancers with wild-type Ras..
Keywords/Search Tags:Ras, Tumor, Signaling, TUSC-T2, RASA5, Genes, Epigenetic
Related items