Font Size: a A A

Self-Assembling Peptide Amphiphiles for Targeted Drug Delivery

Posted on:2014-07-08Degree:Ph.DType:Dissertation
University:Northwestern UniversityCandidate:Moyer, TysonFull Text:PDF
GTID:1454390005995281Subject:Engineering
Abstract/Summary:
The systemic delivery of therapeutics is currently limited by off-target side effects and poor drug uptake into the cells that need to be treated. One way to circumvent these issues is to target the delivery and release of therapeutics to the desired location while limiting systemic toxicity. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures for the development of targeted therapies. Specifically, the research has focused on the interrelationships between presentation of targeting moeities and the control of nanostructure morphology in the context of systemic delivery for targeting cancer and vascular injuries. The self-assembly region of the PA was systematically altered to achieve control of nanostructure widths, from 100 nm to 10 nm, by the addition of valine-glutamic acid dimers into the chemical structure, subsequently increasing the degree of nanostructure twist. For the targeting of tumors, a homing PA was synthesized to include a dimeric, cyclic peptide sequence known to target the cancer-specific, death receptor 5 (DR5) and initiate apoptosis through the oligomerization of DR5. This PA presented a multivalent display of DR5-binding peptides, resulting in improved binding affinity measured by surface plasmon resonance. The DR5-targeting PA also showed enhanced efficacy in both in vitro and in vivo tumor models relative to non-targeted controls. Alternative modifications to the PA-based antitumor therapies included the use of a cytotoxic, membrane-lytic PA coassembled with a pegylated PA, which showed enhanced biodistribution and in vivo activity after coassembly. The functionalization of the hydrophobic core was also accomplished through the encapsulation of the chemotherapy camptothecin, which was shown to be an effective treatment in vivo. Additionally, a targeted PA nanostructure was designed to bind to the site of vascular intervention by targeting collagen IV. Following balloon angioplasty, targeted PA nanofibers showed enhanced binding by fluorescence relative to spherical micelles with the same targeting sequence, demonstrating the importance of nanostructure shape for vascular binding. Nitric oxide was functionalized onto the PA nanostructure through the S-nitrosylation (SNO) of a cysteine residue. Two weeks after vascular injury, the SNO-functionalized, targeted nanofibers showed significantly decreased levels of restenosis. In all treatment methods described, the control of multivalency through the tuning of supramolecular structure was essential to achieve optimal binding. Understanding the role of dynamic, supramolecular structures for the systemic delivery of peptide therapeutics should be an important focus of future work.
Keywords/Search Tags:Delivery, Peptide, Targeted, Therapeutics
Related items