Font Size: a A A

Methods for constraining surface properties and volatile migration on Phoebe, Triton, Pluto, and the moon

Posted on:2014-03-16Degree:Ph.DType:Dissertation
University:New Mexico State UniversityCandidate:Miller, Charles FrederickFull Text:PDF
GTID:1453390008462452Subject:Astronomy
Abstract/Summary:
The surface properties and surface volatile content of rocky bodies contain clues as to the formation and subsequent evolution of our Solar System. Many Solar System bodies retain essentially pristine subsurface volatiles, but their surface volatiles have often undergone chemical processing from UV irradiation and heating from impacts over millennia. The result is a wide range of surface properties observed today. We analyze the surfaces of these primitive bodies with the goal of deducing their evolutionary history. To this end, we employed three targeted analysis methods to characterize the surface properties and/or volatile distribution of three Solar System satellites. We derived photometric properties of Saturn's moon Phoebe from observations taken at low solar phase angles and corn-pared these results to those published for other Solar System objects. We conclude that Phoebe's surface has similarities to both Jupiter family comets and Kuiper Belt Objects (KBOs), supporting the conjecture that Phoebe migrated to Saturn the outer Solar System. We converted a General Circulation Model (GCM) to simulate the atmospheric motion of Neptune's moon Triton. We used this model to investigate the effect of N2 surface frosts on Triton's global atmospheric circulation. Our simulations identified specific atmospheric thermal conditions that led to wind speeds and directions consistent with the motion of erupting geysers captured by Voyager 2 images. Finally, we developed an 3-D n-body ballistic plume model to analyze the geometry and dynamics of the ejecta plume created by the impact of the Lunar CRater Observation and Sensing Satellite (LCROSS) on the Moon. LCROSS was designed to detect water content in lunar regolith, but also served as a test bed for comparing the properties of a large-scale, controlled impact with laboratory impact experiments. By comparing plume simulation results to our observations of the LCROSS impact, we confirmed the predictions that the LCROSS ejecta plume was in fact a multi-component plume and found that the low velocity cutoff for high-angle particles varied with ejection angle.
Keywords/Search Tags:Surface properties, Volatile, Solar system, Plume, Phoebe, LCROSS
Related items