Font Size: a A A

Characterization of infection arrest mutants of Medicago truncatula and genetic mapping of their respective genes

Posted on:2006-04-21Degree:Ph.DType:Dissertation
University:University of North TexasCandidate:Veereshlingam, HaritaFull Text:PDF
GTID:1453390005496074Subject:Biology
Abstract/Summary:
In response to compatible rhizobia, leguminous plants develop unique plant organs, root nodules, in which rhizobia fix nitrogen into ammonia. During nodule invasion, the rhizobia gain access to newly divided cells, the nodule primordia, in the root inner cortex through plant-derived cellulose tubes called infection threads. Infection threads begin in curled root hairs and bring rhizobia into the root crossing several cell layers in the process. Ultimately the rhizobia are deposited within nodule primordium cells through a process resembling endocytosis. Plant host mechanisms underlying the formation and regulation of the invasion process are not understood. To identify and clone plant genes required for nodule invasion, recent efforts have focused on Medicago truncatula. In a collaborative effort the nodulation defect in the lin (lumpy infections) mutant was characterized. From an EMS-mutagenized population of M. truncatula, two non-allelic mutants nip (n&barbelow;umerous i&barbelow;nfections with p&barbelow;olyphenolics) and sli (sluggish i&barbelow;nfections) were identified with defects in nodule invasion. Infection threads were found to proliferate abnormally in the nip mutant nodules with only very rare deposition of rhizobia within plant host cells. nip nodules were found to accumulate polyphenolic compounds, indicative of a host defense response. Interestingly, nip was also found to have defective lateral root elongation suggesting that NIP has a role in both nodule and lateral root development. NIP was found to map at the upper arm of chromosome 1. In sli, infection threads were observed to bring rhizobia from infection threads to newly divided nodule primordium cells in the roots inner cortex. Polyphenolic accumulation in sli nodule/bumps was found. Lateral roots in sli were found to be clustered at the top of the root, indicating that sli like nip may be defective in lateral root development.
Keywords/Search Tags:Root, NIP, Infection, Nodule, Rhizobia, Sli, Truncatula, Plant
Related items