Font Size: a A A

Thermohydraulic and nuclear modeling of natural fission reactors

Posted on:2005-01-06Degree:Ph.DType:Dissertation
University:University of Nevada, Las VegasCandidate:Viggato, Jason CharlesFull Text:PDF
GTID:1452390008987820Subject:Engineering
Abstract/Summary:
Experimental verification of proposed nuclear waste storage schemes in geologic repositories is not possible, however, a natural analog exists in the form of ancient natural reactors that existed in uranium-rich ores. Two billion years ago, the enrichment of natural uranium was high enough to allow a sustained chain reaction in the presence of water as a moderator. Several natural reactors occurred in Gabon, Africa and were discovered in the early 1970's. These reactors operated at low power levels for hundreds of thousands of years. Heated water generated from the reactors also leached uranium from the surrounding rock strata and deposited it in the reactor cores. This increased the concentration of uranium in the core over time and served to "refuel" the reactor. This has strong implications in the design of modern geologic repositories for spent nuclear fuel. The possibility of accidental fission events in man-made repositories exists and the geologic evidence from Oklo suggests how those events may progress and enhance local concentrations of uranium.; Based on a review of the literature, a comprehensive code was developed to model the thermohydraulic behavior and criticality conditions that may have existed in the Oklo reactor core. A two-dimensional numerical model that incorporates modeling of fluid flow, temperatures, and nuclear fission and subsequent heat generation was developed for the Oklo natural reactors.; The operating temperatures ranged from about 456 K to about 721 K. Critical reactions were observed for a wide range of concentrations and porosity values (9 to 30 percent UO2 and 10 to 20 percent porosity). Periodic operation occurred in the computer model prediction with UO2 concentrations of 30 percent in the core and 5 percent in the surrounding material. For saturated conditions and 30 percent porosity, the model predicted temperature transients with a period of about 5 hours. Kuroda predicted 3 to 4 hour durations for temperature transients. The large instantaneous jumps in temperature could be an indication of the violent ejection of water that Kuroda predicted, resulting in ongoing geyser activity. The range of temperatures simulated by the computer model within the Oklo reactors agreed with evidence from the Oklo geology.
Keywords/Search Tags:Natural, Reactors, Model, Nuclear, Oklo, Fission
Related items