Font Size: a A A

Longitudinal driver model and collision warning and avoidance algorithms based on human driving databases

Posted on:2005-07-31Degree:Ph.DType:Dissertation
University:University of MichiganCandidate:Lee, KangwonFull Text:PDF
GTID:1452390008978637Subject:Engineering
Abstract/Summary:
Intelligent vehicle systems, such as Adaptive Cruise Control (ACC) or Collision Warning/Collision Avoidance (CW/CA), are currently under development, and several companies have already offered ACC on selected models. Control or decision-making algorithms of these systems are commonly evaluated under extensive computer simulations and well-defined scenarios on test tracks. However, they have rarely been validated with large quantities of naturalistic human driving data.; This dissertation utilized two University of Michigan Transportation Research Institute databases (Intelligent Cruise Control Field Operational Test and System for Assessment of Vehicle Motion Environment) in the development and evaluation of longitudinal driver models and CW/CA algorithms. First, to examine how drivers normally follow other vehicles, the vehicle motion data from the databases were processed using a Kalman smoother. The processed data was then used to fit and evaluate existing longitudinal driver models (e.g., the linear follow-the-leader model, the Newell's special model, the nonlinear follow-the-leader model, the linear optimal control model, the Gipps model and the optimal velocity model). A modified version of the Gipps model was proposed and found to be accurate in both microscopic (vehicle) and macroscopic (traffic) senses.; Second, to examine emergency braking behavior and to evaluate CW/CA algorithms, the concepts of signal detection theory and a performance index suitable for unbalanced situations (few threatening data points vs. many safe data points) are introduced. Selected existing CW/CA algorithms were found to have a performance index (geometric mean of true-positive rate and precision) not exceeding 20%. To optimize the parameters of the CW/CA algorithms, a new numerical optimization scheme was developed to replace the original data points with their representative statistics. A new CW/CA algorithm was proposed, which was found to score higher than 55% in the performance index.; This dissertation provides a model of how drivers follow lead-vehicles that is much more accurate than other models in the literature. Furthermore, the data-based approach was used to confirm that a CW/CA algorithm utilizing lead-vehicle braking was substantially more effective than existing algorithms, leading to collision warning systems that are much more likely to contribute to driver safety.
Keywords/Search Tags:Algorithms, Collision, CW/CA, Model, Driver, Data, Systems, Vehicle
Related items