Font Size: a A A

Discrete fiber-reinforced polyurea systems for infrastructure strengthening and blast mitigation

Posted on:2013-08-14Degree:Ph.DType:Dissertation
University:Missouri University of Science and TechnologyCandidate:Carey, Natalia LFull Text:PDF
GTID:1452390008965958Subject:Chemistry
Abstract/Summary:
The research presented in this dissertation focused on evaluating the effectiveness of various blast mitigation materials and coating technologies to be used for enhancing blast resistance of structural members. Mechanical properties and blast mitigation performance of different discrete fiber-reinforced polyurea (DFRP) systems were investigated through experimental and analytical work. Four technical papers discuss the research efforts conducted within this dissertation.;The first paper examined the development and characterization of different DFRP systems for infrastructure strengthening and blast retrofit. The behavior of various systems which consisted of chopped E-glass fibers discretely integrated in with the polyurea matrix was evaluated through coupon tensile testing. The addition of glass fiber to a polymer coating provided improved stiffness and strength to the composite system while the polyurea base material provided ductility.;The second paper evaluated the behavior of hybrid, plain, and steel fiber-reinforced concrete panels coated with various polyurea and DFRP systems under blast loading. Hybrid panels demonstrated higher blast mitigation performance compared to plain and steel fiber-reinforced concrete panels due to sacrificial hybrid layer. The addition of plain polyurea or DFRP systems on the tension side improved panel performance by containing fragmentation during a blast event.;The third paper presents an analytical investigation conducted using the explicit finite element program LS-DYNA to model panel and coating response under blast loading. Several modeling solutions were undertaken and compared for concrete formulation. Modeling results were analyzed and compared to the experimental work to validate the conclusions.;The final paper describes an internal equilibrium mechanics based model developed to predict the flexural capacity of reinforced concrete beams strengthened with various DFRP systems. The developed model was validated using available experimental results. A parametric analysis was conducted on four aged bridges in Missouri using an internal force equilibrium approach and material characterization results of the various DFRP systems to evaluate an increase in flexural capacity due to strengthening systems.
Keywords/Search Tags:Systems, Blast, Strengthening, Polyurea, Fiber-reinforced
Related items