Font Size: a A A

Estimating the uncertainty in thermochemical calculations for oxygen-hydrogen combustors

Posted on:2006-09-14Degree:Ph.DType:Dissertation
University:The University of Alabama in HuntsvilleCandidate:Sims, Joseph DavidFull Text:PDF
GTID:1452390008962510Subject:Engineering
Abstract/Summary:
The thermochemistry program CEA2 was combined with the statistical thermodynamics program PAC99 in a Monte Carlo simulation to determine the uncertainty in several CEA2 output variables due to uncertainty in thermodynamic reference values for the reactant and combustion species. In all, six typical performance parameters were examined, along with the required intermediate calculations (five gas properties and eight stoichiometric coefficients), for three hydrogen-oxygen combustors: a main combustor, an oxidizer preburner and a fuel preburner. The three combustors were analyzed in two different modes: design mode, where, for the first time, the uncertainty in thermodynamic reference values---taken from the literature---was considered (inputs to CEA2 were specified and so had no uncertainty); and data reduction mode, where inputs to CEA2 did have uncertainty. The inputs to CEA2 were contrived experimental measurements that were intended to represent the typical combustor testing facility.; In design mode, uncertainties in the performance parameters were on the order of 0.1% for the main combustor, on the order of 0.05% for the oxidizer preburner and on the order of 0.01% for the fuel preburner. Thermodynamic reference values for H2O were the dominant sources of uncertainty, as was the assigned enthalpy for liquid oxygen.; In data reduction mode, uncertainties in performance parameters increased significantly as a result of the uncertainties in experimental measurements compared to uncertainties in thermodynamic reference values. Main combustor and fuel preburner theoretical performance values had uncertainties of about 0.5%, while the oxidizer preburner had nearly 2%. Associated experimentally-determined performance values for all three combustors were 3% to 4%. The dominant sources of uncertainty in this mode were the propellant flowrates.; These results only apply to hydrogen-oxygen combustors and should not be generalized to every propellant combination. Species for a hydrogen-oxygen system are relatively simple, thereby resulting in low thermodynamic reference value uncertainties. Hydrocarbon combustors, solid rocket motors and hybrid rocket motors have combustion gases containing complex molecules that will likely have thermodynamic reference values with large uncertainties. Thus, every chemical system should be analyzed in a similar manner as that shown in this work.
Keywords/Search Tags:Uncertainty, CEA2, Combustors, Thermodynamic reference values, Uncertainties
Related items