Investigation of Primary Causes of Load-Related Cracking in Asphalt Concrete Pavement in North Carolina | Posted on:2014-04-26 | Degree:Ph.D | Type:Dissertation | University:North Carolina State University | Candidate:Park, Hong Joon | Full Text:PDF | GTID:1452390008959140 | Subject:Engineering | Abstract/Summary: | PDF Full Text Request | This dissertation presents causes of cracking in asphalt concrete pavement in North Carolina through field investigation and laboratory experiments with field extracted material. North Carolina is experiencing higher than anticipated rates of fatigue cracking compared to other state. These higher than expected rates could be reflective of the national trends in mix design practice or could be caused by structural pavement failures. The problems associated with premature cracking in North Carolina pavements point to the need to evaluate the North Carolina Department of Transportation (NCDOT) mixes, processes, and measures to ensure that these factors properly balance the goals of preventing cracking and minimizing permanent deformation. Without solid data from in-service pavements, any conclusions regarding the causes of these failures might be pure conjecture. Accordingly, this research examines material properties through laboratory experiments using field-extracted materials and investigates in situ pavements and pavement structure. In order to assess condition of existing pavement, alligator cracking index (ACI) was developed. The asphalt content in the top layer that exhibits top-down cracking or bottom-up cracking has a proportional relationship to ACI values. The air void content in a bottom layer that exhibits top-down cracking or bottom-up cracking shows an inverse proportional relationship to ACI values. These observations reflect reasonable results. A comparison between ACI and asphalt film thickness values does not produce noteworthy findings, but somewhat reasonable results are evident once the range of comparison is narrowed down. Thicker film thicknesses show higher ACI values. From field core visual observations, road widening is identified as a major cause of longitudinal cracking. Regions with observed layer interface separation tend to have low ACI values. Through tensile strain simulation based on actual field conditions, it is observed that sites with observed bottom-up cracking have higher tensile strain levels at the bottom of the asphalt layer than sites with observed top-down cracking. Extracted binder fatigue test results indicate that binder properties between good and poor sections of a given site are not the result of differences in the binder properties. Hence, other mixture design factors are at work in controlling the site variability in terms of fatigue resistance. | Keywords/Search Tags: | Cracking, North carolina, Pavement, Asphalt, ACI values, Causes, Field | PDF Full Text Request | Related items |
| |
|