Font Size: a A A

On the mechanics, computational modeling, and design implementation of piezoelectric actuators on micro air vehicles

Posted on:2014-06-30Degree:Ph.DType:Dissertation
University:University of FloridaCandidate:Lacroix, Bradley WFull Text:PDF
GTID:1452390008954807Subject:Engineering
Abstract/Summary:
This document details the research performed on applying piezoelectric macro fiber composite actuators on micro air vehicles. The research objective was to apply the minimum number of macro fiber composites to the aircraft in an optimized manner in order to obtain complete control authority. To do this, a local-global approach was taken. Numerical predictions, experiments, and finite element models were used to model the macro fiber composites in a local manner, approximating the curvature of the actuator when bonded to a substrate. The substrate was selected to maximize the curvature when submitted to expected loads. In a global manner, the design of the aircraft was optimized, using a computational model, to provide the largest control authority under expected flight conditions. A variety of experimental tests were conducted to create an accurate aeroelastic computer model, including tests to determine material properties, static loading tests, and wind tunnel testing. Two of the optimized designs were tested in the wind tunnel to verify the predicted improvement, which confirmed the accuracy of the computer model. Other experimental results are also included, including experiments examining the unimorph fabrication technique, rigid assumptions used for the aerodynamic model, and high frequency dynamics of the macro fiber composite unimorph.
Keywords/Search Tags:Macro fiber, Model
Related items