Font Size: a A A

Assessing the Influence of Wake Dynamics on the Performance and Aeroelastic Behavior of Wind Turbines

Posted on:2013-12-07Degree:Ph.DType:Dissertation
University:The Ohio State UniversityCandidate:Kecskemety, Krista MarieFull Text:PDF
GTID:1452390008466159Subject:Engineering
Abstract/Summary:
While wind turbine farms are currently rapidly expanding, there are numerous technological challenges that must be overcome before wind energy represents a significant contributor to energy generation in the United States. One of the primary challenges is accurately accounting for the aerodynamic environment. This dissertation is focused on improving the aerodynamic modeling through the incorporation of wake effects. A comprehensive verification and validation of the NREL FAST code, which has been enhanced to include a Free Vortex Wake (FVW) model was conducted. The verification and validation is carried out through a comparison of wake geometry, blade lift distribution, wind turbine power and force and moment coefficients using a combination of Computational Fluid Dynamics (CFD) and experimental data. The results are also compared against Blade Element Momentum Theory (BEM), and results from an extensive experimental campaign by NREL on the prediction capabilities of wind turbine modeling tools. Results indicate that the enhanced aeroelastic code generally provides improved predictions. However, in several notable cases the predictions are only marginally improved, or even worse, than those generated using Blade Element Momentum Theory aerodynamics. After verification and validation of the model, the impact of including the free vortex wake model in the presence of turbulent flow was also examined. The inclusion of turbulence created large differences between BEM and FVW in predictions of rotor loading and power, however the amplitude of the turbulence did not have a large impact on the difference between the FVW and BEM. In addition to loading and power predictions, the structural response (tip deflections and root bending moments) of the wind turbine is investigated in the presence of turbulent inflow. The results indicate that the turbulence intensity and spectral model have a significant effect on the importance of the wake dynamics in modeling the tip deflections and root moments. From the dissertation results, it is concluded that modeling of the aerodynamic environment remains incomplete, even after inclusion of wake effects. One important aspect identified for future improvements is modeling of the unsteady aerodynamic lift characteristics of the rotor.
Keywords/Search Tags:Wind turbine, Wake, Modeling, Dynamics, Aerodynamic
Related items