Font Size: a A A

Solid-State Electrode Engineering and Material Processing for All-Solid-State Lithium and Lithium-Ion Batteries

Posted on:2014-03-18Degree:Ph.DType:Dissertation
University:University of Colorado at BoulderCandidate:Yersak, Thomas AFull Text:PDF
GTID:1452390005498777Subject:Engineering
Abstract/Summary:
In this dissertation we demonstrate the full rechargeability of a FeS 2/lithium metal battery at 60°C. To enable the reversibility of the FeS2 redox chemistry we utilize a bulk all-solid-state battery architecture based upon the Li2S-P2S5 glass-ceramic electrolyte. The glass-ceramic electrolyte's non-volatility and non-flammability allows us to use a lithium metal anode safely, while its solid nature confines FeS2's intermediate electroactive species to prevent active material loss and capacity fade. Based only on the weight of the active materials our battery stands to triple the specific energy (Wh kg-1) of conventional state-of-the-art Li-ion batteries. We also observe ortho-FeS2 as a charge product and propose a new discharge mechanism which revises 30 years of research on the subject.;Unfortunately, our laboratory FeS2/Li battery could not achieve a practical cell-level specific energy because the composite electrode was nearly 70 wt. % glass-ceramic electrolyte and carbon black. We also found that our batteries were not durable because the formation of lithium dendrites through the glass-ceramic electrolyte separator membrane frequently internally shorted test cells upon charge. The remainder of this dissertation outlines our work to develop an all-solid-state Li-ion battery to address the shorting issue and the work done to engineer better active material-electrolyte solid-solid interfaces in the composite electrode for high cell-level specific energy.
Keywords/Search Tags:Electrode, Lithium, Specific energy, Battery, All-solid-state
Related items