Font Size: a A A

Fundamental studies of chalcogenide nanocrystals, carbonaceous nanoparticles, and chromatographic materials

Posted on:2012-08-08Degree:Ph.DType:Dissertation
University:State University of New York at BuffaloCandidate:Baker, Jared ScottFull Text:PDF
GTID:1451390011451388Subject:Chemistry
Abstract/Summary:
The development of novel nanomaterials and the understanding of their fundamental physical and chemical properties represent an exciting area of research. These materials are continuously being sought for ever-increasing applications; finding their way into uses that influence mankind on a daily basis. Combining elements from traditional nanoparticle characterization with electrophoretic-based techniques, this dissertation presents the analysis of carbon nanoparticles (CNPs) generated from a novel source (candle soot) as well as a unique perspective on the reactivity and degradation process of magic-sized cadmium chalcogenide nanocrystals.;One potential application of CNPs is their use as an alternative fluorophore in a separation-based sensor system. Laser-induced-fluorescence (LIF) is a commonly used manner of detection in this type of platform, but is limited in many cases by problems associated with the fluorophore. Carbon-based nanoparticles have the potential to improve upon traditional fluorophores in applications that make use of LIF as the detection scheme. CNPs were extracted from the carbonaceous material produced by the incomplete combustion of a candle. The soot was submitted to an oxidizing treatment and extraction/filtration procedures rendering watersoluble luminescent species. Electron microscopy was used to identify globular, amorphous structures in the nanometer size-range. An aqueous suspension of CNPs demonstrated excellent stability in terms of its electronic properties, showing little change in absorption and emission spectra upon storage under ambient conditions over a two-year period.;Capitalizing on the strengths of capillary electrophoresis (CE) as a characterization technique, we have analyzed the negatively-charged CNPs in terms of charge and size by studying the influence of variable CE conditions on the resulting separation. Separations at different pH revealed a highly complex mixture of CNPs, containing species with large electrophoretic mobilities under a wide range of pH values. The mobility of these nanoparticles as a function of ionic strength was compared to classical electrokinetic theory, suggesting that the species are small, highly charged particles with appreciable zeta potentials, even at low pH.;In an attempt to reduce the complexity of the CNP solution, two molecular-weight based fractionation techniques were employed and evaluated. Traditional dialysis and ultracentrifugation filtration techniques were modified to generate multiple CNPs fractions based on size. Analysis of the fractions by absorption and photoluminescence spectroscopy as well as CE revealed specific characteristics for a given sized-fraction. Namely, a strong correlation between the size of the CNPs and their luminescent emission was observed. CE was utilized to characterize each fraction and to ultimately judge the effectiveness of the fractionation techniques.;The characterization of the persistence and degradation of magic-sized CdSe nanocrystals (NCs) after their removal from the original reaction mixture and dispersion into basic aqueous solutions was performed by absorption spectroscopy. NCs degraded after dilution into aqueous NaOH, resulting in red-shifted excitonic absorption bands and eventual flocculation. Dilution of NCs into basic aqueous solutions of cysteinate resulted in degradation via a different mechanism with an absence of flocculation; kinetics varied with concentration of cysteinate. The chemical fate of NCs after dilution into basic aqueous solutions containing both Cd2+ and cysteinate varied with the cysteinate-to-Cd 2+ molar ratio, which determined the relative solute mole fractions of various Cd2+-cysteinate complexes. CdSe NCs persisted on long timescales only when dispersed in solutions containing [Cd(cysteinate) 3]4-. Equilibria are presented to account for the observed spectral changes after dilution of CdSe into various basic media. Cadmium(II)-cysteinate complex-formation equilibria influenced the temporal persistence of the nanocrystals; the pathway through which CdSe NCs degraded depended on the concentration of free, uncoordinated cysteinate. These findings indicate that solution-phase chemistry can determine whether NCs remain intact upon removal from their original reaction mixtures.;Departing from the analysis of nanomaterials, an additional chapter focuses on the evaluation of a new chromatographic packing material. Two chromatographic columns packed with superficially porous packing material, Kinetex(TM) 1.7 mum and 2.6 mum C18 particles were evaluated in terms of their physical properties and performance characteristics. These columns were compared to a column packed with a sub-2 mum totally porous material and to a Halo(TM) column packed with 2.7 mum C18 superficially porous packing. The columns packed with superficially porous particles displayed a comparably narrower size distribution, which is narrower than the distribution of the totally porous sub-2 mum particles. Physical characteristics of the Kinetex(TM) particles were evaluated in terms of surface area, pore diameter, and specific pore volume. Total, external, internal and shell porosities among the four different columns were evaluated and compared. The specific permeability for the Kinetex columns showed values close to those predicted by the Kozeny-Carman equation. All four columns were evaluated in terms of their chromatographic performance and compared using the Knox equation. The columns packed with the 2.6 mum and 2.7 mum superficially porous materials showed reduced plate heights below 2, while the sub-2 mum particles showed values of 2.2 and above.
Keywords/Search Tags:Material, Particles, Superficially porous, Mum, Into basic aqueous solutions, Nanocrystals, Chromatographic, Cnps
Related items