Font Size: a A A

Characterization of 14C in Neutron-Irradiated Graphite

Posted on:2014-08-21Degree:Ph.DType:Dissertation
University:Idaho State UniversityCandidate:LaBrier, Daniel PatrickFull Text:PDF
GTID:1451390008959901Subject:Engineering
Abstract/Summary:
A long-term radiological concern regarding irradiated graphite waste is the presence of the radionuclide 14C. Recent studies suggest that a significant portion of 14C contamination present in reactor-irradiated graphite is concentrated on the surface and within near-surface layers. Methods for treating irradiated graphite waste (e.g. pyrolysis, oxidation) in order to remove 14C-bearing species from the bulk graphite are being investigated to lend guidance in optimizing long-term disposal strategies.;Characterization studies were performed in order to determine the chemical nature of 14C on irradiated graphite surfaces. Samples of the nuclear-grade graphite NBG-25 were irradiated in a neutron flux of 10 14 n/cm2-s for 360 days at the Advanced Test Reactor (at the Idaho National Laboratory). Surface-sensitive analysis techniques (XPS, ToF-SIMS, SEM/EDS and Raman) were employed to determine the type, location and quantity of specific chemical species and bonds that were present on the surfaces of irradiated graphite samples.;Several 14C precursor species were identified on the surfaces of irradiated NBG-25; the quantities of these species decrease at sub-surface depths, which, is consistent with the observation of high concentrations of 14C on the surfaces of graphite reactor components. The elevated presence of surface oxide complexes on irradiated NBG-25 surfaces was attributed directly to neutron irradiation. Pathways for the release of 14C were identified for irradiated NBG-25: carboxyls and lactones (14CO 2), and carbonyls, ethers and quinones (14CO). Increased amounts of C-O and C=O bonding were observed on irradiated NBG-25 surfaces (when compared to unirradiated samples) in the form of interlattice (e.g. ether) and dangling (e.g. carboxyl or quinone) bonds; the quantities of these bond types also decrease at sub-surface depths. The results of this study are consistent with thermal treatment studies that indicate that the primary candidates for the release of 14C from irradiated graphite surfaces are 14CO and 14CO2.
Keywords/Search Tags:14C, Irradiated graphite, Surfaces, Studies
Related items