Font Size: a A A

High Power Electric Double-Layer Capacitors based on Room-Temperature Ionic Liquids and Nanostructured Carbons

Posted on:2014-03-20Degree:Ph.DType:Dissertation
University:Drexel UniversityCandidate:Perez, Carlos RFull Text:PDF
GTID:1451390008950473Subject:Engineering
Abstract/Summary:
The efficient storage of electrical energy constitutes both a fundamental challenge for 21st century science and an urgent requirement for the sustainability of our technological civilization. The push for cleaner renewable forms of energy production, such as solar and wind power, strongly depends on a concomitant development of suitable storage methods to pair with these intermittent sources, as well as for mobile applications, such as vehicles and personal electronics. In this regard, Electrochemical Double-Layer Capacitors (supercapacitors) represent a vibrant area of research due to their environmental friendliness, long lifetimes, high power capability, and relative underdevelopment when compared to electrochemical batteries.;Currently supercapacitors have gravimetric energies one order of magnitude lower than similarly advanced batteries, while conversly enjoying a similar advantage over them in terms of power. The challenge is to increase the gravimentric energies and conserve the high power. On the material side, research focuses on highly porous supports and electrolytes, the critical components of supercapacitors. Through the use of electrolyte systems with a wider electrochemical stability window, as well as properly tailored carbon nanomaterials as electrodes, significant improvements in performance are possible. Room Temperature Ionic Liquids and Carbide-Derived Carbons are promising electrolytes and electrodes, respectively. RTILs have been shown to be stable at up to twice the voltage of organic solvent-salt systems currently employed in supercapacitors, and CDCs are tunable in pore structure, show good electrical conductivity, and superior demonstrated capability as electrode material.;This work aims to better understand the interplay of electrode and electrolyte parameters, such as pore structure and ion size, in the ultimate performance of RTIL-based supercapacitors in terms of power, energy, and temperature of operation. For this purpose, carbon nanomaterials such as nanoporous CDC nanopowders, vertically aligned carbon nanotube arrays, and single wall carbon nanotube aerogels, were synthesized and used as electrodes, alongside RTIL electrolytes with systematically varying ion sizes and compositions. While electrode/electrolyte development can take place along parallel lines, both must be properly matched to the device's ultimate operating conditions and specific application. The resulting devices exhibit good performance characteristics, and the best temperature range of any electrochemical storage device to date.
Keywords/Search Tags:High power, Temperature, Carbon, Storage, Electrochemical
Related items