Font Size: a A A

Nuclear design methodology for analyzing ultra high temperature highly compact ternary carbide reactor

Posted on:2006-12-20Degree:Ph.DType:Dissertation
University:University of FloridaCandidate:Gouw, Reza RaymondFull Text:PDF
GTID:1451390008459905Subject:Engineering
Abstract/Summary:PDF Full Text Request
Recent studies at the Innovative Nuclear Space Power and Propulsion Institute (INSPI) have demonstrated the feasibility of fabricating solid solutions of ternary carbide fuels such as (U,Zr,Nb)C, (U,Zr,Ta)C, (U,Zr,Hf)C and (U,Zr,W)C. The necessity for accurate nuclear design analysis of these ternary carbides in highly compact nuclear space systems prompted the development of nuclear design methodology for analyzing these systems. This study will present the improvement made in the high temperature nuclear cross-sections. It will show the relation between Monte Carlo and Deterministic calculations. It will prove the significant role of the energy spectrum in the multigroup nuclear cross-sections generation in the highly-thermalized-nuclear system. The nuclear design methodology will address several issues in the homogenization of a nuclear system, such as energy spectrum comparison between a heterogeneous system and homogeneous system. It will also address several key points in the continuous and multigroup nuclear cross-sections generation. The study will present the methodology of selecting broad energy group structures. Finally, a comparison between the Monte Carlo and Deterministic methods will be performed for the Square-Lattice Honeycomb Nuclear Space Reactor. In the comparison calculations, it will include the system characterization calculations, such as energy spectrum comparison, 2-D power distributions, temperature coefficient analysis, and water submersion accident analysis.
Keywords/Search Tags:Nuclear, Temperature, Energy spectrum, System, Ternary, Comparison
PDF Full Text Request
Related items