Font Size: a A A

Synthesis of designed materials by laser-based direct metal deposition technique: Experimental and theoretical approaches

Posted on:2006-09-11Degree:Ph.DType:Dissertation
University:University of MichiganCandidate:Qi, HuanFull Text:PDF
GTID:1451390008454640Subject:Engineering
Abstract/Summary:
Direct metal deposition (DMD), a laser-cladding based solid freeform fabrication technique, is capable of depositing multiple materials at desired composition which makes this technique a flexible method to fabricate heterogeneous components or functionally-graded structures. The inherently rapid cooling rate associated with the laser cladding process enables extended solid solubility in nonequilibrium phases, offering the possibility of tailoring new materials with advanced properties. This technical advantage opens the area of synthesizing a new class of materials designed by topology optimization method which have performance-based material properties.; For better understanding of the fundamental phenomena occurring in multi-material laser cladding with coaxial powder injection, a self-consistent 3-D transient model was developed. Physical phenomena including laser-powder interaction, heat transfer, melting, solidification, mass addition, liquid metal flow, and species transportation were modeled and solved with a controlled-volume finite difference method. Level-set method was used to track the evolution of liquid free surface. The distribution of species concentration in cladding layer was obtained using a nonequilibrium partition coefficient model. Simulation results were compared with experimental observations and found to be reasonably matched.; Multi-phase material microstructures which have negative coefficients of thermal expansion were studied for their DMD manufacturability. The pixel-based topology-optimal designs are boundary-smoothed by Bezier functions to facilitate toolpath design. It is found that the inevitable diffusion interface between different material-phases degrades the negative thermal expansion property of the whole microstructure. A new design method is proposed for DMD manufacturing.; Experimental approaches include identification of laser beam characteristics during different laser-powder-substrate interaction conditions, an investigation of extended solubility in multi-material laser cladding, and a study of DMD manufacturing technology for its impact on energy and environment with the comparison of traditional machining process. Experimental results show the feasibility of depositing multiple materials at arbitrary compositions and forming clad with unlimited solubility and uniform distribution in DMD process. DMD technology presents great potential for reducing energy consumption and environmental impact in parts repairing/remanufacturing and situations where the part to be built has small solid-to-cavity volume ratio.
Keywords/Search Tags:Materials, DMD, Laser, Metal, Technique, Experimental, Cladding
Related items