Font Size: a A A

Atomistic modeling of the aluminum and iron oxide material system using classical molecular dynamics

Posted on:2006-04-25Degree:Ph.DType:Dissertation
University:Georgia Institute of TechnologyCandidate:Tomar, VikasFull Text:PDF
GTID:1451390005995728Subject:Applied mechanics
Abstract/Summary:
In the current research, a framework based on classical molecular dynamics (MD) is developed for computational mechanical analyses of complex nanoscale materials. The material system of focus is a combination of fcc-Al and alpha-Fe2O3. The framework includes the development of an interatomic potential, a scalable parallel MD code, nanocrystalline composite structures, and methodologies for the quasistatic and dynamic strength analyses. The interatomic potential includes an embedded atom method (EAM) cluster functional, a Morse type pair function, and a second order electrostatic interaction function. The framework is applied to analyze the nanoscale mechanical behavior of the Al+Fe2O3 material system in two different settings. First, quasistatic strength analyses of nanocrystalline composites with average grain sizes varying from 3.9 nm to 7.2 nm are carried out. Second, shock wave propagation analyses are carried out in single crystalline Al, Fe2O3, and one of their interfaces. The quasistatic strength analyses reveal that the deformation mechanisms in the analyzed nanocrystalline structures are affected by a combination of factors including high fraction of grain boundary atoms and electrostatic forces. The slopes as well as the direct or inverse nature of observed Hall-Petch (H-P) relationships are strongly dependent upon the volume fraction of the Fe2O3, phase in the composites. The compressive strengths of single phase nanocrystalline structures are two to three times the tensile strengths owing to the differences in the movement of atoms in grain boundaries during compressive and tensile deformations. Analyses of shock wave propagation in single crystalline systems reveal that the shock wave velocity (US) and the particle velocity (UP) relationships as well as the type and the extent of shock-induced deformation in single crystals are strongly correlated with the choice of crystallographic orientation for the shock wave propagation. Analyses of shock wave propagation through an interface between Al and Fe2O 3, point to a possible threshold UP value beyond which a shock-induced structural transformation that is reactive in nature in a region surrounding the interface may be taking place. Overall, the framework and the analyses establish an important computational approach for investigating the mechanical behavior of complex nanostructures at the atomic length- and time-scales.
Keywords/Search Tags:Analyses, Material system, Shock wave propagation, Mechanical, Framework
Related items