Inorganic nanotube nanofluidics | | Posted on:2007-05-26 | Degree:Ph.D | Type:Dissertation | | University:University of California, Berkeley | Candidate:Fan, Rong | Full Text:PDF | | GTID:1451390005987376 | Subject:Chemistry | | Abstract/Summary: | PDF Full Text Request | | The ability to manipulate charge carriers (electrons and holes) in metal-oxide semiconductor field effect transistors (MOSFETs) has revolutionized how information is processed and stored, and created the modern digital age. Introducing direct field effect modulation in fluidic systems would enable the manipulation of ionic and molecular species at a similar level and even logic operation. Due to strong Debye screening in aqueous solutions, field effect manipulation of ion transport arises only in systems whose dimensions are comparable to the critical Debye Length, i.e. in nanofluidic systems.; Nanofluidics has already been explored in various cases, e.g. biological channel proteins and artificial solid-state nanopores. All these two terminal systems usually transport the ions the same way as passive electron conduction in a resistor. My work is aimed at developing nanotube nanofluidic units with a third terminal that can electrically turn on/off and control ion and biomolecule transport. Moreover, the systematic study on "doping" and transient phenomena can provide rich information to assess the electrokinetics theory and fluidic physics in nanoscale.; Silica nanotubes were synthesized by oxidation/etching approach using vertical silicon nanowires as templates. A single nanotube was integrated into a metal-oxide-solution field effect transistor (MOSolFET) by interfacing with two microfluidic channels and a metallic gate electrode. Concentration dependence of ionic conductance through single nanotubes revealed the emergence of unipolar environment at low ionic strength regime. In this case, ionic conductance is only associated with majority ions and governed by surface potentials and charge densities. By applying a gate voltage, the ionic conductance can be quickly modulated. The gate voltages alter the surface potential of the silica nanotubes via capacitive coupling through the nanotube wall and the electrical double layer. In a negatively charged silica nanotube, a positive gate voltage depletes cations (majority) while a negative gate further enhances cation concentration. The resulting device is essentially a p-type ionic transistor.; The inherent carrier concentration within nanotubes is determined by surface potentials and charge densities. Therefore, surface modification, which alters surface charges, can change the inherent carrier density and even switch channel polarity. We functionalize the hydroxyl group terminated silica surfaces with aminosilane chemistry, thus modifying the surface charge density and creating ambipolar and n-type nanofluidic transistors. We further employed the Poisson-Boltzmann model to systematically analyze these results. Transient responses upon switching on gate voltages lead us to propose a first kinetic model to explain the field effect modulation in nanofluidic systems.; This single nanotube-based nanofluidic device, which has dimensions comparable to the size of biomolecules, represents a new-platform for single molecule detection. lambda-DNA translocations through single nanotubes were stochastically sensed by ionic current changes. The results turned out that both charge effect and geometrical effect play key roles in, single molecule sensing. These high aspect ratio nanotubes provide a novel approach to investigate the conformational evolution from the fine structure of ionic current curves, which is mechanistically different from that for narrow nanopores.; The development of microtrench-based fabrication process enables the custom-designed and multiplexed nanotube nanofluidic systems. The anionic dye diffusion was regulated by ionic strength, in agreement with unipolar transport mechanism. A well-aligned mesoporous nanochannel thin film was exploited for sub-10nm nanofluidics.; Nanofluidics is attracting increasing attention in bioanalytical technology and biophysics field. MOSolFETs represent the key units for building up large-scale nanofluidic processors and logic circuits. Thi... | | Keywords/Search Tags: | Nanofluidic, Field, Nanotube, Charge, Ionic | PDF Full Text Request | Related items |
| |
|