Font Size: a A A

Fundamental studies of graphene/graphite and graphene-based Schottky photovoltaic devices

Posted on:2014-08-12Degree:Ph.DType:Dissertation
University:University of FloridaCandidate:Miao, XiaochangFull Text:PDF
GTID:1451390005984942Subject:Physics
Abstract/Summary:
In the carbon allotropes family, graphene is one of the most versatile members and has been extensively studied since 2004. The goal of this dissertation is not only to investigate the novel fundamental science of graphene and its three-dimensional sibling, graphite, but also to explore graphene's promising potential in modern electronic and optoelectronic devices. The first two chapters provide a concise introduction to the fundamental solid state physics of graphene (as well as graphite) and the physics at the metal/semiconductor interfaces.;In the third chapter, we demonstrate the formation of Schottky junctions at the interfaces of graphene (semimetal) and various inorganic semiconductors that play dominating roles in today's semiconductor technology, such as Si, SiC, GaAs and GaN. As shown from their current-voltage (I -V) and capacitance-voltage (C-V) characteristics, the interface physics can be well described within the framework of the Schottky-Mott model. The results are also well consist with that from our previous studies on graphite based Schottky diodes.;In the fourth chapter, as an extension of graphene based Schottky work, we investigate the photovoltaic (PV) effect of graphene/Si junctions after chemically doped with an organic polymer (TFSA). The power conversion efficiency of the solar cell improves from 1.9% to 8.6% after TFSA doping, which is the record in all graphene based PVs. The I -V, C-V and external quantum efficiency measurements suggest 12 that such a significant enhancement in the device performance can be attributed to a doping-induced decrease in the series resistance and a simultaneous increase in the built-in potential.;In the fifth chapter, we investigate for the first time the effect of uniaxial strains on magneto-transport properties of graphene. We find that low-temperature weak localization effect in monolayer graphene is gradually suppressed under increasing strains, which is due to a strain-induced decreased intervalley-scattering rate.;In chapter 6, we study the high vacuum thermal annealing effect on an unconventional ferromagnetism (FM) in highly oriented pyrolytic graphite (HOPG). The FM diminishes and eventually disappears in annealed samples accompanied by improved electrical transport properties and crystallinity. Our results indicate that the FM is mainly coming from the lattice imperfections.
Keywords/Search Tags:Graphene, Schottky, Graphite, Fundamental
Related items