Fatigue and fatigue crack growth processes in hard tissues: The importance of age and surface integrity | | Posted on:2014-10-25 | Degree:Ph.D | Type:Dissertation | | University:University of Maryland, Baltimore County | Candidate:Majd, Hessam | Full Text:PDF | | GTID:1451390005490262 | Subject:Engineering | | Abstract/Summary: | PDF Full Text Request | | With the progressive increase in partially and fully dentate seniors, fracture has become an increasingly common form of restored tooth failure. Dentin undergoes progressive changes in microstructure with patient age, and studies are now suggesting that there is a reduction in fatigue strength and fatigue crack growth resistance of this tissue. This dissertation explores aging of dentin, the influence of flaws that are introduced during restorative processes on the fatigue properties of dentin, and proposes models for characterizing the damage initiation and growth process during fatigue of dentin.;Results from this investigation show that the fatigue crack growth properties (Paris Law parameters (C, m) andDeltaKth) of human dentin undergo the most significant changes at a patient age of 42 years. Based on the fatigue crack growth responses, three age groups were established including young (age≤33), aged (34≤age ≤49) and old (50≤age) patients for further analysis. There were significant differences in the initiation and growth behavior between the tissues of patients from the three age groups. With regards to the influence of restorative processes, there was no influence on the quasi-static responses of dentin. However, the endurance limit of dentin treated with the dental burs (28 MPa) and abrasive air jet (35 MPa) were approximately 36% and 20% lower than that of the control (44 MPa), respectively. Both cutting processes caused a significant reduction (p≤0.0001) in fatigue strength.;An accumulative damage model was developed to characterize fatigue of the control and bur treated dentin as well as provide a model for fatigue life prediction. The damage models were derived as a function of number of loading cycles (N), and ratio of applied stress to ultimate strength (r). The developed models provide estimations for the initial state of damage, the state of damage during the life, as well as the damage accumulation rate for cyclic loading of dentin. Using the experimental findings, a Damage Effect Model (DEM) was also developed to describe the influence of flaws introduced by bur treatment on fatigue of dentin. The DEM showed that the damage caused by bur treatment is uniform and independent of tubule orientation. Using the developed DEM for dentin with 0° tubule orientation, material constants of bur treated dentin with 90° orientation were estimated and used in predicting fatigue for controlled experimental conditions involving a notched fatigue approach.;Overall, the results of this study provide fundamental knowledge concerning the influence of aging and cutting processes on the fatigue properties of dentin. These findings are of substantial importance to the field of restorative dentistry, and potentially establish the need for treating senior patients with an approach that is unique from that of younger patients. The damage models developed in this investigation are the first that have been developed for hard tissues, and provide a foundation for future research aimed at modeling fatigue processes in hard tissues including bone and dentin. | | Keywords/Search Tags: | Fatigue, Hard tissues, Processes, Dentin, Damage, Provide | PDF Full Text Request | Related items |
| |
|