Font Size: a A A

Fundamental Studies of Assembly and Mechanical Properties of Lipid Bilayer Membranes and Unilamellar Vesicles

Posted on:2014-01-14Degree:Ph.DType:Dissertation
University:University of California, IrvineCandidate:Wang, XiFull Text:PDF
GTID:1451390005488023Subject:Biophysics
Abstract/Summary:
This dissertation work focuses on: (i) obtaining a phospholipid bilayer membrane (LBM)/conducting electrode system with low defect density and optimized rigidity; (ii) investigating vesicle stability and mechanical properties. LBM is a simplified yet representative cell membrane model. LBMs assembled on conductive surfaces can probe protein-LBM interactions activities electrochemically. Sterically stabilized vesicles could be used as cell models or for drug delivery.;The main challenges for LBM assembly on gold are vesicles do not spontaneously rupture to form LBMs on gold and the roughness of the gold substrate has considerable influence on molecular film defect density. In this study, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles were functionalized with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine- N-poly(ethylene glycol)-2000-N-[3-(2-pyridyldithio)propionate] (DSPE-PEG-PDP) to yield stable LBMs on gold without surface modification. A template-stripping method was used to obtain atomically flat and pristine gold surfaces. The critical force to initiate vesicle rupture decreases with increasing DSPE-PEG-PDP concentration, indicating that gold-thiolate bonding between DSPE-PEG-PDP and gold substrates promotes LBM formation.;Mechanical properties of LBMs and vesicles were investigated as a function of DSPE-PEG-PDP concentration via Atomic Force Microscopy. The elastic moduli of LBMs were determined with DSPE-PEG-PDP concentration ranging from 0mol% to 24mol% and were found to depend on PEG chain conformation. Incorporating DSPE-PEG-PDP molecules with PEG in mushroom conformation results in a decrease of LBM rigidity, while incorporating PEG in brush conformation leads to LBM stiffening. Contrarily, mechanical properties of functionalized vesicles did not vary significantly by varying DSPE-PEG-PDP concentration. LBM with tunable rigidity by adjusting DSPE-PEG-PDP concentration provides a versatile cell membrane model for studying protein or peptide activities. The study of vesicle rupture mechanics and mechanical properties provide a means of understanding triggered release of internal payload from vesicular structures.;POPC vesicles were also deposited on graphene; a transparent and highly conductive electrode. A combination method of diffusion bonding and template-stripping was used to prepare metal surfaces for graphene growth without concerns of outgassing, thermal and chemical compatibility. Continuous LBM formed on graphene-single crystal Cu, while tubular features with 120°C patterns formed on graphene-Cu foil, indicating the step edge of Cu below graphene may also guide the assembly of tubular LBM features on graphene.
Keywords/Search Tags:LBM, Mechanical properties, DSPE-PEG-PDP concentration, Vesicles, Assembly, Membrane, Graphene
Related items