Font Size: a A A

A multi-wavelength study on gamma-ray bursts and their afterglows

Posted on:2012-12-08Degree:Ph.DType:Dissertation
University:University of Nevada, Las VegasCandidate:Zhang, BinbinFull Text:PDF
GTID:1450390011451387Subject:Physics
Abstract/Summary:
During the prompt emission and afterglow phases, GRBs (Gamma-Ray Bursts) release their huge amount of energy not limited in gamma-ray, but in a wide range of muti-wavelengths, from radio band to GeV gamma-rays. Thanks to the recent missions of Swift and Fermi, I was able to use their multi-wavelength observation data of GRBs and study their physical natures. I have processed all the Swift BAT/XRT and Fermi GBM/LAT GRB observation data. Based on the Swift data, I have studied the following comprehensive topics: (1) high-latitude "curvature effect" of early X-ray tails of GRBs Swift XRT afterglow (2) diverse physical origins of shallow decay phase of Swift XRT afterglow. (3) Jet break (in-)consistency in both X-Ray and Optical observations. Based on the Fermi observation data, I focused on the 17 GRBs with Fermi/LAT high-energy emission and found there are three elemental spectral components, namely, a classical "Band" function component, a quasi-thermal component and an extra non-thermal power law component extending to high energies. The detailed behaviors of these three components are extensively studied and their physical origins and corresponding jet properties and emission mechanisms are also discussed.
Keywords/Search Tags:Gamma-ray, Afterglow, Emission, Grbs
Related items