Font Size: a A A

Predictability and prediction of tropical cyclones on daily to interannual time scales

Posted on:2013-08-17Degree:Ph.DType:Dissertation
University:Georgia Institute of TechnologyCandidate:Belanger, James IanFull Text:PDF
GTID:1450390008979868Subject:Statistics
Abstract/Summary:
The spatial and temporal complexity of tropical cyclones (TCs) raises a number of scientific questions regarding their genesis, movement, intensification, and variability. In this dissertation, the principal goal is to determine the current state of predictability for each of these processes using global numerical prediction systems. The predictability findings are then used in conjunction with several new statistical calibration techniques to develop a proof-of-concept, operational forecast system for North Atlantic TCs on daily to intraseasonal time scales.;To quantify the current extent of tropical cyclone predictability, we assess probabilistic forecasts from the most advanced global numerical weather prediction system to date, the ECMWF Variable Resolution Ensemble Prediction System (VarEPS; Hamill et al. 2008, Hagedorn et al. 2012). Using a new false alarm clustering technique to maximize the utility of the VarEPS, the ensemble system is shown to provide well-calibrated probabilistic forecasts for TC genesis through a lead-time of one week and pregenesis track forecasts with similar skill compared to the VarEPS's postgenesis track forecasts. These findings provide evidence that skillful real-time TC genesis predictions may be made in the North Indian Ocean---a region that even today has limited forecast warning windows for TCs relative to other ocean basins.;To quantify the predictability of TCs on intraseasonal time scales, forecasts from the ECMWF Monthly Forecast System (ECMFS) are examined for the North Atlantic Ocean. From this assessment, dynamically based forecasts from the ECMFS provide forecast skill exceeding climatology out to weeks three and four for portions of the southern Gulf of Mexico, western Caribbean and the Main Development Region. Forecast skill in these regions is traced to the model's ability to capture correctly the variability in deep-layer vertical wind shear as well as the relative frequency of easterly waves moving through these regions.;Following the TC predictability studies, a proof-of-concept operational forecast system for North Atlantic TCs is presented for daily to intraseasonal time scales. Findings from the predictability studies are used in conjunction with recently developed forecast calibration techniques to render the VarEPS and ECMFS forecasts more useful in an operational setting. The proposed combination of bias-calibrated regional probabilistic forecast guidance along with objectively-defined measures of confidence is a new way of providing TC forecasts on intraseasonal time scales.;On interannual time scales, the predictability of TCs is examined by considering their relationship with tropical Atlantic easterly waves. First, a set of easterly wave climatologies for the Climate Forecast System-Reanalysis, ERA-Interim, ERA-40, and NCEP/NCAR Reanalysis are developed using a new easterly wave tracking algorithm based on 700 hPa curvature relative vorticity anomalies. From the reanalysis-derived easterly wave climatologies, a moderately positive and statistically significant relationship is seen with tropical Atlantic TCs, suggesting that approximately 20--30% of the total variance in the number of TCs on interannual time scales may be explained by the frequency of easterly waves. In relation to large-scale climate modes, the Atlantic Multidecadal Oscillation (AMO) and Atlantic Meridional Mode (AMM) exhibit the strongest positive covariability with Atlantic easterly wave frequency.;Besides changes in the number of easterly waves, the intensification efficiency of easterly waves, which is the percentage of waves that induce North Atlantic TC formation, has also been evaluated. These findings offer a plausible physical explanation for the recent increase in the number of NATL TCs, as it has been concomitant with an increasing trend in both the number of tropical Atlantic easterly waves and intensification efficiency. In addition, the easterly wave--tropical cyclone pathway is likely an important mechanism governing how the AMO and AMM modulate North Atlantic TC frequency---more so than previous thought (e.g., Thorncroft and Hodges 2001, Hopsch et al. 2007, Kossin and Vimont 2007).;The last component of this dissertation examines how the historical variability in U.S. landfalling TCs has impacted the annual TC tornado record. To reconcile the inhomogeneous, historical tornado record, two statistical tornado models, developed from a set of a priori predictors for TC tornado formation, are used to reconstruct the TC tornado climatology. Based on the evaluation period during the most reliable portion of the TC tornado record, these models possess moderate skill in forecasting the magnitude of a tornado outbreak from a Gulf landfalling TC and have high skill in forecasting the annual number of TC tornadoes. While the synthetic TC tornado record also reflects decadal scale variations in association with the AMO, a comparison of the current warm phase of the AMO with the previous warm phase period shows that the median number of tornadoes per Gulf TC landfall has significantly increased. This change likely reflects the increase in median TC size (by 35%) of Gulf landfalling TCs along with an increased frequency of large TCs at landfall.
Keywords/Search Tags:Tcs, Time scales, Tropical, Predictability, TC tornado, Easterly waves, Prediction, Atlantic
Related items