Font Size: a A A

Upper limits on the ultra-high energy cosmic ray flux from unresolved sources

Posted on:2013-12-09Degree:Ph.DType:Dissertation
University:Case Western Reserve UniversityCandidate:Burton, Ross EFull Text:PDF
GTID:1450390008977308Subject:Physics
Abstract/Summary:
The Pierre Auger Observatory is the world's largest ultra-high energy cosmic ray detector. Its goals include answering basic questions about the origins and composition of cosmic rays at the highest energies. We outline the scientific motivation for constructing such an observatory and we highlight some of the significant results produced so far by this world-class instrument. We present the results of our own contributions toward calibrating the timing characteristics of the instrument followed by two alternative techniques for analyzing cosmic ray arrival direction data. The first technique is based on a Bayesian statistical framework and is presented as a solution to some of the difficulties in applying a standard analysis to identify anisotropy in the cosmic ray flux. The second analysis we present is based on a Markov Chain Monte Carlo method for identifying sources of cosmic rays in our arrival direction data. We are able to use our method to set an upper limit of 0.15 per square km per year on the flux from any potential sources producing ultra-high energy cosmic rays with energy E ≥ 3 EeV. We conclude with a proposal for enhancing the already successful observatory with an array of non-imaging Cherenkov detectors. According to our simulation work, such an array could serve as both an independent measure of the cosmic ray energy and, if the array is dense enough, it could also provide insight into the composition of ultra-high energy cosmic rays on an event by event basis.
Keywords/Search Tags:Ultra-high energy cosmic, Sources, Arrival direction data
Related items