Font Size: a A A

Quantum control of ultracold atoms and molecules via linearly chirped laser pulses and optical frequency comb

Posted on:2013-06-24Degree:Ph.DType:Dissertation
University:Stevens Institute of TechnologyCandidate:Collins, Thomas AFull Text:PDF
GTID:1450390008490236Subject:Atomic physics
Abstract/Summary:
This work investigates the potential of performing high yield quantum control operations on atomic and molecular systems using frequency modulated laser fields. The effectiveness of a single laser pulse in creating desired superposition states within the valence shell of Rubidium and the utilization of a single pulse train in order to perform internal state cooling of diatomic hetero-nuclear molecules, in this case KRb, are investigated. These methods are an alternative to the current protocol in the field of quantum control which typically calls for the employment of two laser fields, be they single pulses or pulse trains. Manipulation of the state of the valence electron within Rubidium was studied for two different models of the hyperfine levels of the 5s and 5p orbitals: a three level Lambda system and the more realistic four level system accounting for all allowed optical transitions. Numerical analysis of the population dynamics that occur within the system during the time of interaction with the pulse was carried out for various values of the field parameters as well as for two different forms of the pulse envelope. Population inversion within the hyperfine levels of the 5s orbital of Rubidium is demonstrated for a single linearly polarized, linearly down chirped, laser pulse of nanosecond duration and beam intensity on the order of kWcm2 . Superpositions of equally populated hyperfine states, a phenomenon which is crucial in the development of qubits, were also observed for certain values of the field parameters. The results of this analysis are applicable to 85Rb and 87Rb and both the D1 and D2 transitions and are valid for the two models used. For the case of internal state cooling, the power spectrum of a standard pulse train was compared to that of a pulse with sinusoidal phase modulation revealing that the envelope of the frequency comb associated with such a pulse train is controllable via the phase modulation. Thus through frequency modulation the components of the frequency comb that correspond to the desired transitions within such molecules may be emphasized. This method of internal state cooling differs from current protocols which call for the use of a two field STIRAP process.
Keywords/Search Tags:Quantum control, Frequency, Pulse, Internal state cooling, Laser, Molecules, Linearly, Field
Related items