Font Size: a A A

Lipid-protein interactions: Photoreceptor membrane model

Posted on:2006-07-18Degree:Ph.DType:Dissertation
University:The University of ArizonaCandidate:Botelho, Ana VitoriaFull Text:PDF
GTID:1450390008470841Subject:Biophysics
Abstract/Summary:
G-protein coupled receptors (GPCRs) are transmembrane proteins capable of recognizing an astonishing variety of biological signals, ranging from photons of light to hormones, odorants, and neurotransmitters involved in key biological signaling processes. The aim of this work is to identify how lipid-protein interactions involving the membrane bilayer ultimately affect such vital biological functions. Here the relationship between the bilayer thickness, hydrophobic mismatch, and protein aggregation are investigated by expanding the framework of membrane-receptor interactions in terms of a new flexible surface model. Previously, we have shown how coupling of the elastic stress-strain due to mismatch of the spontaneous curvature and hydrophobic thickness at the lipid/protein interface can govern the conformational transitions of membrane proteins. This approach has now been extended to include coupling of the lateral organization of the GPCR rhodopsin to the curvature and area stress and strain of the proteolipid membrane.; Rhodopsin was labeled with site-specific fluorophores, and a FRET technique was employed to probe protein association in different lipid environments. Moreover, UV-visible spectroscopy was used for thermodynamic characterization of the conformational change of rhodopsin. Lastly, the deformation of the lipids with and without rhodopsin was probed in terms of acyl chain order parameters and relaxation rates by solid-state NMR methods, giving insight into the lipid deformation.; The results showed that optimal receptor activation occurs in phosphatidylcholine bilayers of 20-carbon acyl chain length, hence one can say that metarhodopsin II is likely to adopt an elongated shape. Lipids promoting aggregation, or below their gel to liquid crystalline transition temperature all favor formation of metarhodopsin I. The data also showed that association and activation of rhodopsin do not always correlate. In terms of the extended flexible surface model, the stress due to hydrophobic mismatch is coupled via the effective number of lipids surrounding the protein due to the lateral organization of the membrane. The measured changes in rhodopsin-rhodopsin interactions and membrane influences on the conformation of the protein after photoisomerization may be crucial to understanding physiological regulation of the rod disk membranes. They are relevant to understanding the complexity of biomembranes involved in many cellular mechanisms, including signal transduction.
Keywords/Search Tags:Membrane, Protein, Interactions
Related items