Font Size: a A A

Studies of numerical algorithms for gyrokinetics and the effects of shaping on plasma turbulence

Posted on:2007-02-01Degree:Ph.DType:Dissertation
University:Princeton UniversityCandidate:Belli, Emily AnnFull Text:PDF
GTID:1450390005485192Subject:Physics
Abstract/Summary:
Advanced numerical algorithms for gyrokinetic simulations are explored for more effective studies of plasma turbulent transport. The gyrokinetic equations describe the dynamics of particles in 5-dimensional phase space, averaging over the fast gyromotion, and provide a foundation for studying plasma microturbulence in fusion devices and in astrophysical plasmas. Several algorithms for Eulerian/continuum gyrokinetic solvers are compared. An iterative implicit scheme based on numerical approximations of the plasma response is developed. This method reduces the long time needed to set-up implicit arrays, yet still has larger time step advantages similar to a fully implicit method. Various model preconditioners and iteration schemes, including Krylov-based solvers, are explored. An Alternating Direction Implicit algorithm is also studied and is surprisingly found to yield a severe stability restriction on the time step. Overall, an iterative Krylov algorithm might be the best approach for extensions of core tokamak gyrokinetic simulations to edge kinetic formulations and may be particularly useful for studies of large-scale ExB shear effects.; The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the nonlinear GS2 gyrokinetic code with analytic equilibria based on interpolations of representative JET-like shapes. High shaping is found to be a stabilizing influence on both the linear ITG instability and nonlinear ITG turbulence. A scaling of the heat flux with elongation of chi ∼ kappa-1.5 or kappa-2 (depending on the triangularity) is observed, which is consistent with previous gyrofluid simulations. Thus, the GS2 turbulence simulations are explaining a significant fraction, but not all, of the empirical elongation scaling. The remainder of the scaling may come from (1) the edge boundary conditions for core turbulence, and (2) the larger Dimits nonlinear critical temperature gradient shift due to the enhancement of zonal flows with shaping, which is observed with the GS2 simulations.; Finally, a local linear trial function-based gyrokinetic code is developed to aid in fast scoping studies of gyrokinetic linear stability. This code is successfully benchmarked with the full GS2 code in the collisionless, electrostatic limit, as well as in the more general electromagnetic description with higher-order Hermite basis functions.
Keywords/Search Tags:Gyrokinetic, Plasma, Studies, Algorithms, Numerical, Simulations, Turbulence, Effects
Related items