Font Size: a A A

Design for robustness of unique, multi-component engineering systems

Posted on:2008-12-19Degree:Ph.DType:Dissertation
University:George Mason UniversityCandidate:Shelton, Kenneth AFull Text:PDF
GTID:1448390005969837Subject:Engineering
Abstract/Summary:
The purpose of this research is to advance the science of conceptual designing for robustness in unique, multi-component engineering systems. Robustness is herein defined as the ability of an engineering system to operate within a desired performance range even if the actual configuration has differences from specifications within specified tolerances. These differences are caused by three sources, namely manufacturing errors, system degradation (operational wear and tear), and parts availability. Unique, multi-component engineering systems are defined as systems produced in unique or very small production numbers. They typically have design and manufacturing costs on the order of billions of dollars, and have multiple, competing performance objectives. Design time for these systems must be minimized due to competition, high manpower costs, long manufacturing times, technology obsolescence, and limited available manpower expertise. Most importantly, design mistakes cannot be easily corrected after the systems are operational. For all these reasons, robustness of these systems is absolutely critical.; This research examines the space satellite industry in particular. Although inherent robustness assurance is absolutely critical, it is difficult to achieve in practice. The current state of the art for robustness in the industry is to overdesign components and subsystems with redundancy and margin. The shortfall is that it is not known if the added margins were either necessary or sufficient given the risk management preferences of the designer or engineering system customer.; To address this shortcoming, new assessment criteria to evaluate robustness in design concepts have been developed. The criteria are comprised of the "Value Distance", addressing manufacturing errors and system degradation, and "Component Distance", addressing parts availability. They are based on an evolutionary computation format that uses a string of alleles to describe the components in the design concept. These allele values are unitless themselves, but map to both configuration descriptions and attribute values. The Value Distance and Component Distance are metrics that measure the relative differences between two design concepts using the allele values, and all differences in a population of design concepts are calculated relative to a reference design, called the "base design".; The base design is the top-ranked member of the population in weighted terms of robustness and performance. Robustness is determined based on the change in multi-objective performance as Value Distance and Component Distance (and thus differences in design) increases. It is assessed as acceptable if differences in design configurations up to specified tolerances result in performance changes that remain within a specified performance range. The design configuration difference tolerances and performance range together define the designer's risk management preferences for the final design concepts.; Additionally, a complementary visualization capability was developed, called the "Design Solution Topography". This concept allows the visualization of a population of design concepts, and is a 3-axis plot where each point represents an entire design concept. The axes are the Value Distance, Component Distance and Performance Objective. The key benefit of the Design Solution Topography is that it allows the designer to visually identify and interpret the overall robustness of the current population of design concepts for a particular performance objective. In a multi-objective problem, each performance objective has its own Design Solution Topography view.; These new concepts are implemented in an evolutionary computation-based conceptual designing method called the "Design for Robustness Method" that produces robust design concepts. The design procedures associated with this method enable designers to evaluate and ensure robustness in selected designs that also perform within a de...
Keywords/Search Tags:Robustness, Multi-component engineering, Systems, Unique, Design concepts, Design solution topography, Performance, Value distance
Related items