Font Size: a A A

Development of closed -loop interface circuits for capacitive transducers with application to a MEMS capacitive microphone

Posted on:2008-07-02Degree:Ph.DType:Dissertation
University:University of FloridaCandidate:Kadirvel, KarthikFull Text:PDF
GTID:1448390005958650Subject:Engineering
Abstract/Summary:
There has been a trend towards miniaturization and batch fabrication of sensors inspired by a similar trend in the electronics industry using novel fabrication techniques used in micro electromechanical system (MEMS) fabrication. Capacitive microphones, whose common applications include aeroacoustic measurement and cell phones, is one such sensor whose dimensions are being aggressively scaled down. In measurement microphones, miniaturization will facilitate improved measurement precision, and in cell phones, miniaturization will reduce printer circuit board space and complexity. Both applications will benefit from the potential cost reduction brought by the batch fabrication of sensors.;As sensor geometry is scaled down, improved circuit techniques are required to measure the sensor output. This is because at small geometries sensor capacitance is comparable to unwanted parasitic capacitance which reduces the transducer sensitivity. Also, at reduced sensor geometry, the voltage required to bias the microphone could cause the microphone plates to pull in. The goal of this work is to design and characterize interface circuits that are suitable for miniature capacitive transducers. To achieve this goal, the performance of existing open and closed-loop interface circuits are investigated. Scaling of the performance metrics of the microphone and interface circuit as sensor geometry decreases is also investigated.;A proof of concept closed-loop analog controller for a MEMS capacitive microphone is designed. A test apparatus is developed to characterize the system over the audio range by operating the microphone in a helium medium which increases the bandwidth of the test apparatus. Characterization of the microphone in open and closed loop mode of operation is presented. Results show that stable closed loop operation of the microphone is feasible with increased sensitivity and the potential to address pull-in issues.
Keywords/Search Tags:Microphone, Interface circuits, Closed, MEMS, Capacitive, Sensor, Fabrication
Related items