Font Size: a A A

Investigation of multi-state charge-storage properties of redox-active organic molecules in silicon-molecular hybrid devices for DRAM and Flash applications

Posted on:2008-06-08Degree:Ph.DType:Dissertation
University:North Carolina State UniversityCandidate:Gowda, Srivardhan ShivappaFull Text:PDF
GTID:1448390005478685Subject:Engineering
Abstract/Summary:
Molecular electronics has recently spawned a considerable amount of interest with several molecules possessing charge-conduction and charge-storage properties proposed for use in electronic devices. Hybrid silicon-molecular technology has the promise of augmenting the current silicon technology and provide for a transitional path to future molecule-only technology. The focus of this dissertation work has been on developing a class of hybrid silicon-molecular electronic devices for DRAM and Flash memory applications utilizing redox-active molecules. This work exploits the ability of molecules to store charges with single-electron precision at room temperature.;The hybrid devices are fabricated by forming self-assembled monolayers of redox-active molecules on Si and oxide (SiO2 and HfO2) surfaces via formation of covalent linkages. The molecules possess discrete quantum states from which electrons can tunnel to the Si substrate at discrete applied voltages (oxidation process, cell write), leaving behind a positively charged layer of molecules. The reduction (erase) process, which is the process of electrons tunneling back from Si to the molecules, neutralizes the positively charged molecular monolayer.;Hybrid silicon-molecular capacitor test structures were electrically characterized with an electrolyte gate using cyclic voltammetry (CyV) and impedance spectroscopy (CV) techniques. The redox voltages, kinetics (write/erase speeds) and charge-retention characteristics were found to be strongly dependent on the Si doping type and densities, and ambient light. It was also determined that the redox energy states in the molecules communicate with the valence band of the Si substrate. This allows tuning of write and read states by modulating minority carriers in n- and p-Si substrates. Ultra-thin dielectric tunnel barriers (SiO2, HfO2) were placed between the molecules and the Si substrate to augment charge-retention for Flash memory applications. The redox response was studied as a function of tunnel oxide thickness, dielectric permittivity and energy barrier, and modified Butler-Volmer expressions were postulated to describe the redox kinetics. The speed vs. retention performance of the devices was improved via asymmetric layered tunnel barriers.;The properties of molecules can be tailored by molecular design and synthetic chemistry. In this work, it was demonstrated that an alternate route to tune/enhance the properties of the hybrid device is to engineer the substrate (silicon) component. The molecules were attached to diode surfaces to tune redox voltages and improve charge-retention characteristics. N+ pockets embedded in P-Si well were utilized to obtain multiple states from a two-state molecule. The structure was also employed as a characterization tool in investigating the intrinsic properties of the molecules such as lateral conductivity within the monolayer.;Redox molecules were also incorporated on an ultra thin gate-oxide of Si MOSFETs with the intent of studying the interaction of redox states with Si MOSFETs. The discrete molecular states were manifested in the drain current and threshold voltage characteristics of the device. This work demonstrates the multi-state modulation of Si-MOSFETs' drain current via redox-active molecular monolayers. Polymeric films of redox-active molecules were incorporated to improve the charge-density (ON/OFF ratio) and these structures may be employed for multi-state, low-voltage Flash memory applications.;The most critical aspect of this research effort is to build a reliable and high density solid state memory technology. To this end, efforts were directed towards replacement of the electrolytic gate, which forms an extremely thin insulating double layer (∼10 nm) at the electrolyte-molecule interface, with a combination of an ultra-thin high-K dielectric layer and a metal gate. Several interesting observations were made in the research approaches towards integration and provided valuable insights into the electrolyte-redox systems.;In summary, this work provides fundamental insights into the interaction of redox-energy states with silicon substrate and realistic approaches for exploiting the unique properties of the molecules that may enable solutions for nanoscale high density, low-voltage, long retention and multiple bit memory applications.
Keywords/Search Tags:Molecules, Molecular, Applications, Redox, Hybrid, Devices, Flash, Multi-state
Related items