Font Size: a A A

Fabrication and optimization of phosphorescent organic light emitting diodes for solid-state lighting applications

Posted on:2011-10-12Degree:Ph.DType:Dissertation
University:The University of Texas at DallasCandidate:Bhansali, Unnat SFull Text:PDF
GTID:1448390002457750Subject:Engineering
Abstract/Summary:
Organic Light Emitting Diodes (OLEDs) have made tremendous progress over the last decade and are under consideration for use as solid-state lighting sources to replace the existing incandescent and fluorescent technology. Use of metal-organic phosphorescent complexes as bright emitters and efficient charge transporting organic semiconductors has resulted in OLEDs with internal quantum efficiency &sim 100% and power efficiency &sim100 lm/W (green OLEDs) at 1000 cd/m2. For lighting applications, white OLEDs (WOLEDs) are required to have a color rendering index (CRI) > 80, correlated color temperature (CCT) (2700 &le WOLEDs &le 6500 °K), power efficiency > 100 lm/W and a lifetime > 25,000 hrs (at 70% of its original lumen value) at a brightness of 1000 cd/m2. Typically, high CRIs and high power efficiencies are obtained by either a combination of a blue fluorescent emitter with green and red phosphorescent emitters or a stack of blue, green and red phosphorescent emitters doped in a host material. In this work, we implement a single-emitter WOLEDs (SWOLEDs) approach by using monomer (blue) and broad excimer emissions (green and orange) from a self-sensitizing Pt-based phosphorescent complex, designed and synthesized by Prof. M.A. Omary's group.We have optimized and demonstrated high efficiency turquoise-blue OLEDs from monomer emission of Pt(ptp)2 - bis[3,5--bis(2--pyridyl)--1,2,4--triazolato]platinum(II) doped in a phosphine-oxide based host molecule and an electron transport molecule. The device peak power efficiency and external quantum efficiency were maintained >40 lm/W and >11%, respectively throughout the wide range of dopant concentrations (1% to 10%). A monotonic increase in the excimer/monomer emission intensity ratio is observed at the higher doping concentrations within 1%-10%, causing a small green-shift in the color. The peak performance of 60 -- 70 lm/W for the best optimized device represents the highest power efficiency known to date for blue OLEDs. Typically, the commercially available and most commonly used Ir-based emitters suffer from triplet-triplet annihilation and self-quenching issues due to their long triplet excited lifetimes (&sim1 mus). The performance of these OLEDs is hence very sensitive to the dopant concentration. On the other hand, Pt(ptp)2 is a self-sensitizing, fast phosphor with triplet lifetimes ~100 ns and near unity quantum yield at room temperature. We have demonstrated high peak efficiency yellow OLEDs from undoped (neat) thin films of the emitter complex (>30 lm/W) and near 100% Internal Quantum Efficiency (IQE) with faster radiative recombination rate than doped films, thus proving the existence of self-sensitization in electroluminescence. We have successfully combined the monomer emission (low dopant concentrations) and excimer emission of Pt(ptp)2 to achieve high CRI SWOLEDs using a 2-layer and a 3-layer graded-doping design. The best color metrics were a CRI=62 and a CCT = 3452 K for a WOLED with the highest power efficiency = 31.3 lm/W and EQE = 17.4%, representing excellent performance for single-emitter WOLEDs.
Keywords/Search Tags:Oleds, Power efficiency, Phosphorescent, Lm/w, Lighting
Related items