Font Size: a A A

Latent class analysis of diagnostic science assessment data using Bayesian networks

Posted on:2009-08-28Degree:Ph.DType:Dissertation
University:Stanford UniversityCandidate:Steedle, Jeffrey ThomasFull Text:PDF
GTID:1447390005957192Subject:Education
Abstract/Summary:
Diagnostic science assessments seek to draw inferences about student understanding by eliciting evidence about the mental models that underlie students' reasoning about physical systems. Measurement techniques for analyzing data from such assessments embody one of two contrasting assessment programs: learning progressions and facet-based assessments. Learning progressions assume that students have coherent theories that they apply systematically across different problem contexts. In contrast, the facet approach makes no such assumption, so students should not be expected to reason systematically across different problem contexts. A systematic comparison of these two approaches is of great practical value to assessment programs such as the National Assessment of Educational Progress as they seek to incorporate small clusters of related items in their tests for the purpose of measuring depth of understanding.;This dissertation describes an investigation comparing learning progression and facet models. Data comprised student responses to small clusters of multiple-choice diagnostic science items focusing on narrow aspects of understanding of Newtonian mechanics. Latent class analysis was employed using Bayesian networks in order to model the relationship between students' science understanding and item responses. Separate models reflecting the assumptions of the learning progression and facet approaches were fit to the data.;The technical qualities of inferences about student understanding resulting from the two models were compared in order to determine if either modeling approach was more appropriate. Specifically, models were compared on model-data fit, diagnostic reliability, diagnostic certainty, and predictive accuracy. In addition, the effects of test length were evaluated for both models in order to inform the number of items required to obtain adequately reliable latent class diagnoses. Lastly, changes in student understanding over time were studied with a longitudinal model in order to provide educators and curriculum developers with a sense of how students advance in understanding over the course of instruction.;Results indicated that expected student response patterns rarely reflected the assumptions of the learning progression approach. That is, students tended not to systematically apply a coherent set of ideas across different problem contexts. Even those students expected to express scientifically-accurate understanding had substantial probabilities of reporting certain problematic ideas. The learning progression models failed to make as many substantively-meaningful distinctions among students as the facet models. In statistical comparisons, model-data fit was better for the facet model, but the models were quite comparable on all other statistical criteria. Studying the effects of test length revealed that approximately 8 items are needed to obtain adequate diagnostic certainty, but more items are needed to obtain adequate diagnostic reliability. The longitudinal analysis demonstrated that students either advance in their understanding (i.e., switch to the more advanced latent class) over a short period of instruction or stay at the same level. There was no significant relationship between the probability of changing latent classes and time between testing occasions.;In all, this study is valuable because it provides evidence informing decisions about modeling and reporting on student understanding, it assesses the quality of measurement available from short clusters of diagnostic multiple-choice items, and it provides educators with knowledge of the paths that student may take as they advance from novice to expert understanding over the course of instruction.
Keywords/Search Tags:Understanding, Diagnostic, Student, Latent class, Assessment, Science, Models, Across different problem contexts
Related items