Font Size: a A A

Developing a dual assimilation approach for thermal infrared and passive microwave soil moisture retrievals

Posted on:2011-09-05Degree:Ph.DType:Dissertation
University:The University of Alabama in HuntsvilleCandidate:Hain, Christopher RyanFull Text:PDF
GTID:1443390002954813Subject:Atmospheric Sciences
Abstract/Summary:
Soil moisture plays a vital role in the partitioning of sensible and latent heat fluxes in the surface energy budget and the lack of a dense spatial and temporal network of ground-based observations provides a challenge to the initialization of the true soil moisture state in numerical weather prediction simulations. The retrieval of soil moisture using observations from both satellite-based thermal-infrared (TIR) and passive microwave (PM) sensors has been developed (Anderson et al., 2007; Hain et al., 2009; Jackson, 1993; Njoku et al., 2003). The ability of the TIR and microwave observations to diagnose soil moisture conditions within different layers of the soil profile provides an opportunity to use each in a synergistic data assimilation approach towards the goal of diagnosing the true soil moisture state from surface to root-zone.;TIR and PM retrievals of soil moisture are compared to soil moisture estimates provided by a retrospective Land Information System (LIS) simulation using the NOAH LSM during the time period of 2003--2008. The TIR-based soil moisture product is provided by a retrieval of soil moisture associated with surface flux estimates from the Atmosphere-Land-Exchange-Inversion (ALEXI) model (Anderson et al., 1997; Mecikalski et al., 1999; Hain et al., 2009). The PM soil moisture retrieval is provided by the Vrijie Universiteit Amsterdam (VUA)-NASA surface soil moisture product. The VUA retrieval is based on the findings of Owe et al. (2001; 2008) using the Land Surface Parameter model (LPRM), which uses one dual polarized channel (6.925 or 10.65 GHz) for a dual-retrieval of surface soil moisture and vegetation water content. In addition, retrievals of ALEXI (TIR) and AMSR-E (PM) soil moisture are assimilated within the Land Information System using the NOAH LSM. A series of data assimilation experiments is completed with the following configuration: (a) no assimilation, (b) only ALEXI soil moisture, (c) only AMSR-E soil moisture, and (d) ALEXI and AMSR-E soil moisture. The relative skill of each assimilation configuration is quantified through a data-denial experimental design, where the LSM is forced with a degraded precipitation dataset. The ability of each assimilation configuration to correct for precipitation errors is quantified through the comparison of the results with a control simulation over the same domain forced with a high-quality (NLDAS) precipitation dataset.
Keywords/Search Tags:Soil moisture, Assimilation, Et al, Retrieval, Surface, Microwave, ALEXI, TIR
Related items