Font Size: a A A

Non-growing season nitrous oxide fluxes from agricultural soils

Posted on:2010-01-20Degree:Ph.DType:Dissertation
University:University of Guelph (Canada)Candidate:Kariyapperuma Athukoralage, KumudinieFull Text:PDF
GTID:1443390002480552Subject:Agriculture
Abstract/Summary:
A two-year field experiment was conducted at the Arkell Research Station, Ontario, Canada to evaluate composting as a mitigation strategy for greenhouse gases (GHGs). The objectives were to quantify and compare non-growing season nitrous oxide (N2O) fluxes from agricultural soils after fall manure application of composted and untreated liquid swine manure. Nitrous oxide fluxes were measured using a micrometeorological method. Compared to untreated liquid swine manure (LSM), composted swine manure (CSM) resulted in 57% reduction of soil N2O emissions during February to April in 2005, but emissions during the same period in 2006 were not affected by treatments. This effect was related to fall and winter weather conditions with the significant reduction occurring in the year when soil freezing was more pronounced.;The DNDC (DeNitrification-DeComposition) model was tested against data measured during the non-growing seasons from 2000 to 2004, for farming with conventional management at the Elora Research Station, Ontario, Canada. The objective was to assess the ability of the DNDC model to simulate non-growing season N2O fluxes from soils in southwestern Ontario. Comparison between model-simulated and measured data indicated that background fluxes were relatively well predicted. The spring thaw N2O flux event was correctly timed by the DNDC model, but was smaller than the measured spring thaw event. Though there was no N2O emission event measured in early May, the DNDC model predicted a large event, simultaneous with the physical release of predicted ice-trapped N2O. Removing the large and late predicted emission peak and increasing the contribution of newly produced N2O due to denitrification to the early spring thaw event were proposed.;Three data sets from studies conducted in Ontario, Canada were used to estimate and compare the overall GHG (N2O and methane) emissions from LSM and CSM. Compared to LSM storage, the composting process reduced GHG emissions by 35% (CO2-eq), mainly due to decreased methane fluxes. Land application of CSM showed a 38% reduction of total GHGs (CO 2-eq), compared to fall application of LSM. In comparison to liquid swine manure management systems, aerobic composting reduced the overall GHG emissions on a CO2-equivalent basis by 35%.
Keywords/Search Tags:Liquid swine manure, Non-growing season, Nitrous oxide, Fluxes, N2O, DNDC model, Composting, GHG
Related items