Font Size: a A A

Use of material tailoring to improve axial load capacity of elliptical composite cylinders

Posted on:2007-11-24Degree:Ph.DType:Dissertation
University:Virginia Polytechnic Institute and State UniversityCandidate:Sun, MiaoFull Text:PDF
GTID:1442390005978891Subject:Engineering
Abstract/Summary:
This study focuses on the improvement of the axial buckling capacity of elliptical composite cylinders through the use of a circumferentially-varying lamination sequence. The concept of varying the lamination sequence around the circumference is considered as a viable approach for off-setting the disadvantages of having the cylinder radius of curvature vary with circumferential position, the source of the reduced buckling capacity when compared to a circular cylinder with the same circumference. Post-buckling collapse behavior and material failure characteristics are also of interest. Two approaches to implementing a circumferential variation of lamination are examined. For the first approach the lamination sequence is varied in a stepwise fashion around the circumference. Specifically, each quadrant of the cylinder circumference is divided into three equal-length regions denoted as the crown, middle, and side regions. Eight different cylinders designs, whereby each region is constructed of either a quasi-isotropic or an axially-stiff laminate of equal thickness, are studied. Results are compared to the baseline case of an elliptical cylinder constructed entirely of a quasi-isotropic laminate. Since the thickness of the quasi-isotropic and axially-stiff laminates are the same, all cylinders weight the same and thus comparisons are meaningful. Improvements upwards of 18% in axial buckling capacity can be achieved with one particular stepwise design. The second approach considers laminations that vary circumferentially in a continuous fashion to mitigate the effects of the continuously-varying radius of curvature. The methodology for determining how to tailor the lamination sequence circumferentially is based on the analytical predictions of a simple buckling analysis for simply-supported circular cylinders. With this approach, axial buckling load improvements upwards of 30% are realized. Of all the cylinders considered, very few do not exhibit material failure upon collapse in the post-buckled state. Of those that do not, there is little, if any, improvement in bucking capacity. Results for the pre-buckling, buckling, post-buckling, and material failure are obtained from the finite-element code ABAQUS using both static and dynamic analyses. Studies with the code demonstrate that the results obtained are converged.
Keywords/Search Tags:Cylinders, Capacity, Axial, Elliptical, Material, Lamination sequence
Related items